K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

* Ta có A(2; 0) thuộc tia Ox.

Gọi Q(O,90º) (A) = B thì B thuộc tia Oy và OA = OB nên B(0 ; 2).

* Gọi d’ là ảnh của d qua phép quay tâm O, góc quay 90º.

+ A(2 ; 0) ∈ (d)

⇒ B = Q(O,90º) (A) ∈ (d’)

+ B(0 ; 2) ∈ (d).

⇒ C = Q(O,90º) (B) ∈ (d’).

Dễ dàng nhận thấy C(-2; 0) (hình vẽ).

⇒ (d’) chính là đường thẳng BC.

Đường thẳng d’ đi qua B(0 ; 2) và C(-2; 0) nên có phương trình đoạn chắn là:

Giải bài 1 trang 19 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

undefined

Lấy A(2;0), B(0;2) thuộc d, Ta có ảnh của A và B qua phép quay tâm O góc \(90^o\) lần lượt là B=(0;2) và A' = (-2;0). Do đó ảnh của d qua phép quay tâm O góc \(90^o\) là đường thẳng BA' có phương trình x - y + 2 = 0.

31 tháng 3 2017

undefined

Lấy A(2;0), B(0;2) thuộc d, Ta có ảnh của A và B qua phép quay tâm O góc \(90^o\) lần lượt là B=(0;2) và A' = (-2;0). Do đó ảnh của d qua phép quay tâm O góc \(90^o\) là đường thẳng BA' có phương trình x - y + 2 = 0.

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

Dễ thấy A' = {D_{o}}^{}(A) = (1;-3)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = \(D_O\) (B) = (3;0) và C' = \(D_O\) (C) = (1;-1). suy ra phương trình của d' là: \(\dfrac{x-3}{1-3}=\dfrac{y}{-1}\) hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0

31 tháng 3 2017

Dễ thấy A' = \({D_{o}}^{}(A) = (1;-3)\)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = DODO (B) = (3;0) và C' = DODO (C) = (1;-1). suy ra phương trình của d' là: x−31−3=y−1x−31−3=y−1 hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0

24 tháng 5 2017

Dễ thấy d chứa điểm \(H\left(1;1\right)\)\(OH\perp d\). Gọi H' là ảnh của H qua phép quay tâm O góc \(45^0\) thì \(H=\left(0;\sqrt{2}\right)\)

Từ đó suy ra d' phải qua H' và vuông góc với O'. Vậy phương trình của d' là \(y=\sqrt{2}\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng