y=mx−2m−1, m là số thực

1. Chứ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

1, Ta có : y = mx - 2m - 1 

<=> m ( x - 2 ) - 1 - y = 0 

<=> m(x - 2) - (y+1) = 0

Dấu ''='' xảy ra khi x = 2 ; y = -1 

Vậy (d) luôn đi qua A(2;-1) 

2, (d) : y = mx - 2m - 1

Cho x = 0 => y = -2m - 1 

=> d cắt Oy tại A(0;-2m-1) 

=> OA = \(\left|-2m-1\right|\)

Cho y = 0 => x = \(\dfrac{2m+1}{m}\)

=> d cắt trục Ox tại B(2m+1/m;0) 

=> OB = \(\left|\dfrac{2m+1}{m}\right|\)

Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)

\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)

<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)

 

 

25 tháng 1 2022

cảm ơn anh nhiều, 2 bài rồi anh vẫn giúp em

2: Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y_A=0\\mx=2m+1\end{matrix}\right.\Leftrightarrow A\left(\dfrac{2m+1}{m};0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x=0\\y=-2m-1\end{matrix}\right.\Leftrightarrow B\left(-2m-1;0\right)\)

Theo đề, ta có: \(\left|\dfrac{4m^2+4m+1}{m}\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}4m^2+4m+1=4m\\4m^2+4m+1=-4m\end{matrix}\right.\Leftrightarrow4m^2+8m+1=0\)

\(\Leftrightarrow4m^2+8m+4m-3=0\)

\(\Leftrightarrow\left(2m+2\right)^2=3\)

hay \(m\in\left\{\dfrac{\sqrt{3}-2}{2};\dfrac{-\sqrt{3}-2}{2}\right\}\)

 

Bài 1: Cho hàm số y=[ m-2]x + 3a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoànhb. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]a] Tìm hệ số góc của đường thẳng ABb] Chứng tỏ rằng ba điểm A,B,C thẳng...
Đọc tiếp

Bài 1: Cho hàm số y=[ m-2]x + 3

a. Tìm m để đồ thị [d] của hàm số song song với đường thẳng y=x - 2

Vẽ [d] trong trường hợp này và tính góc tạo bởi [d] với trục hoành

b. Tìm m để đồ thị [d] của hàm số đồng qui với hai đường thẳng y= -2x + 1 và y= -x + 4

Bài 2 : Trên mặt phẳng tọa độ cho ba điểm A[2;3], B[-1;-3] và C[0;1]

a] Tìm hệ số góc của đường thẳng AB

b] Chứng tỏ rằng ba điểm A,B,C thẳng hàng 

Bài 3: Cho hàm số y= mx- 2m - 1

a] Định m để đồ thị hàm số đi qua gốc tạo độ O \

b] Gọi A,B lần lượt là giao điểm của đồ thị hàm số với các trục Ox, Oy. Định m để diện tích tam giác OAB bằng [ đvdt]

c] Chứng minh rằng với mọi giá trị của m thì đồ thị của hàm số đã cho luôn đi qua một điểm cố định 

0
7 tháng 11 2017

Bài 3 làm sao v ạ?

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge24x+4x12  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1x=41). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A2x+14x+3+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A4x+14x+3+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014Ax+14x4x+1+2014=x+1(2x1)2+20142014

Hơn nữa    A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x1=0  \Leftrightarrow x=\dfrac{1}{4}x=41 .

Vậy  GTNN  =  2014