Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Ta có: A(0;-4) và C(0;4) là hai điểm đối xứng qua O(0;0)
⇒ OA = OC
B(3;0) và D(-3; 0) là hai điểm đối xứng qua O(0;0)
⇒ OB = OD
Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Lại có: Ox ⊥ Oy hay AC ⊥ BD.
Vậy tứ giác ABCD là hình thoi
Trong Δ∆OAB vuông tại O, theo định lý Pi-ta-go ta có:
AB2=OA2+OB2
AB2=42+32 = 16 + 9 = 25
AB = √25
Vậy chu vi của hình thoi bằng 4√25
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
a) Để viết phương trình đường thẳng AB, CD, DA, ta có thể sử dụng công thức phương trình đường thẳng đi qua hai điểm.
Phương trình đường thẳng AB: Điểm A(4,5) và B(1,-1) Ta có: Độ dốc của đường thẳng AB: m = (y2 - y1) / (x2 - x1) = (-1 - 5) / (1 - 4) = -2 Phương trình đường thẳng AB: y - y1 = m(x - x1) => y - 5 = -2(x - 4) => y - 5 = -2x + 8 => 2x + y = 13
Phương trình đường thẳng CD: Điểm C(4,-4) và D(7,-1) Ta có: Độ dốc của đường thẳng CD: m = (y2 - y1) / (x2 - x1) = (-1 - (-4)) / (7 - 4) = 1 Phương trình đường thẳng CD: y - y1 = m(x - x1) => y - (-1) = 1(x - 7) => y + 1 = x - 7 => x - y = 8
Phương trình đường thẳng DA: Điểm D(7,-1) và A(4,5) Ta có: Độ dốc của đường thẳng DA: m = (y2 - y1) / (x2 - x1) = (5 - (-1)) / (4 - 7) = -2 Phương trình đường thẳng DA: y - y1 = m(x - x1) => y - (-1) = -2(x - 7) => y + 1 = -2x + 14 => 2x + y = 13
b) Để tính chu vi tứ giác ABCD, ta cần tính độ dài các cạnh của tứ giác.
Độ dài cạnh AB: AB = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(1 - 4)^2 + (-1 - 5)^2] = √[9 + 36] = √45
Độ dài cạnh BC: BC = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(4 - 1)^2 + (-4 - (-1))^2] = √[9 + 9] = √18
Độ dài cạnh CD: CD = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 4)^2 + (-1 - (-4))^2] = √[9 + 9] = √18
Độ dài cạnh DA: DA = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 4)^2 + (-1 - 5)^2] = √[9 + 36] = √45
Từ đó, chu vi tứ giác ABCD là: AB + BC + CD + DA = √45 + √18 + √18 + √45.
a) * Gọi (d): y = ax + b là phương trình đường thẳng AB
Do (d) đi qua A nên:
4a + b = 5
⇔ b = 5 - 4a (1)
Do (d) đi qua B nên:
a + b = -1 (2)
Thay (1) vào (2) ta được:
a + 5 - 4a = -1
⇔ -3a = -6
⇔ a = 2
Thay a = 2 vào (1) ta được:
b = 5 - 4.2 = -3
Vậy (d): y = 2x - 3
* Gọi (d'): y = ax + b là phương trình đường thẳng CD
Do (d') đi qua C nên:
4a + b = -4
⇔ b = -4 - 4a (3)
Do (d') đi qua D nên:
7a + b = -1 (4)
Thay (3) vào (4) ta được:
7a - 4 - 4a = -1
⇔ 3a = 3
⇔ a = 1
Thay a = 1 vào (3) ta được:
b = -4 - 4.1 = -8
Vậy (d'): y = x - 8
* Gọi (d''): y = ax + b là phương trình đường thẳng DA
Do (d'') di qua D nên:
7a + b = -1
⇔ b = -1 - 7a (5)
Do (d'') đi qua A nên:
4a + b = 5 (6)
Thay (5) vào (6) ta được:
4a - 1 - 7a = 5
⇔ -3a = 6
⇔ a = -2
Thay a = -2 vào (5) ta được:
b = -1 - 7.(-2) = 13
Vậy (d''): y = -2x + 13
b) Ta có:
AB² = 3² + 6² = 45
⇒ AB = 3√5
BC² = 3² + 3² = 18
⇒ BC = 3√2
CD² = 3² + 5² = 34
⇒ CD = √34
AD² = 3² + 4² = 25
⇒ AD = 5
Chu vi tứ giác ABCD:
3√5 + 3√2 + √34 + 5