Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{CM}\)
\(=\left(\overrightarrow{CM}+\overrightarrow{MA}\right)+\left(\overrightarrow{CM}+\overrightarrow{MB}\right)=\overrightarrow{CA}+\overrightarrow{CB}\) (Không phụ thuộc vào vị trí điểm M).
A B C I K
b) Dựng hình bình hành BCAD. Theo quy tắc hình bình hành:
\(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vậy \(\overrightarrow{CD}=\overrightarrow{v}\).
\(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\)
\(=2\overrightarrow{ME}-2\overrightarrow{MC}\) (E là trung điểm cạnh AB)
\(=\left(\overrightarrow{ME}-MC\right)=2\overrightarrow{CE}\)
vậy \(\overrightarrow{v}\) không phụ thuộc vị trí của điểm M
\(\overrightarrow{CD}=\overrightarrow{v}=2\overrightarrow{CE}\) thì E là trung điểm của CD
\(\Rightarrow\) ta dựng được điểm D
Lời giải:
Bạn phải bổ sung thêm điều kiện $A,B$ cố định.
Gọi $I$ là điểm thuộc $AB$ sao cho $\overrightarrow{IA}=2\overrightarrow{IB}$. Khi đó $I$ cũng là 1 điểm cố định do $A,B$ cố định.
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MA}-2\overrightarrow{MB}=\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})\)
\(\Leftrightarrow \overrightarrow{MN}=-2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB})=-2\overrightarrow{MI}\)
\(\Rightarrow M,I,N\) thẳng hàng.
Chứng tỏ $MN$ luôn đi qua điểm $I$ cố định.
Lời giải:
Bạn phải bổ sung thêm điều kiện $A,B$ cố định.
Gọi $I$ là điểm thuộc $AB$ sao cho $\overrightarrow{IA}=2\overrightarrow{IB}$. Khi đó $I$ cũng là 1 điểm cố định do $A,B$ cố định.
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MA}-2\overrightarrow{MB}=\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})\)
\(\Leftrightarrow \overrightarrow{MN}=-2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB})=-2\overrightarrow{MI}\)
\(\Rightarrow M,I,N\) thẳng hàng.
Chứng tỏ $MN$ luôn đi qua điểm $I$ cố định.
Ta có
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}=\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+\)\(2\left(\overrightarrow{MI}+\overrightarrow{IC}\right)\)
\(=4\overrightarrow{MI}+\left(\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IC}\right)\).
A B C J I
Theo tính chất trung điểm ta có:
\(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IJ}=-2\overrightarrow{IC}\).
Vì vậy \(\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IC}=2\overrightarrow{IJ}+2\overrightarrow{IC}=2\left(-\overrightarrow{IC}+\overrightarrow{IC}\right)=\overrightarrow{0}\).
Suy ra \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=4\overrightarrow{MI}\).
Do đó: \(\overrightarrow{MN}=4\overrightarrow{MI}\) hay 3 điểm M, N, I thẳng hàng.
Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).
\(\overrightarrow{u}=3\overrightarrow{MA}-5\overrightarrow{MB}+2\overrightarrow{MC}=3\left(\overrightarrow{MA}-\overrightarrow{MB}\right)+2\left(\overrightarrow{MC}-\overrightarrow{MB}\right)\)
\(=3\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+2\left(\overrightarrow{MC}+\overrightarrow{BM}\right)=3\overrightarrow{BA}+2\overrightarrow{BC}\) (không phụ thuộc vào vị trí điểm M).