Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Chắc pt đường tròn là \(\left(x-2\right)^2+\left(y+\frac{3}{2}\right)^2=25\)
Gọi d là đường thẳng qua M. Đường tròn tâm \(I\left(2;-\frac{3}{2}\right)\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{5^2-\left(\frac{8}{2}\right)^2}=3\)
Phương trình d qua M có dạng:
\(a\left(x+1\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+a-3b=0\)
Theo công thức khoảng cách:
\(d\left(I;d\right)=\frac{\left|2a-\frac{3}{2}b+a-3b\right|}{\sqrt{a^2+b^2}}=3\Leftrightarrow\left|2a-3b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow\left(2a-3b\right)^2=4\left(a^2+b^2\right)\Leftrightarrow5b^2-12ab=0\)
\(\Rightarrow\left[{}\begin{matrix}b=0\\5b=12a\end{matrix}\right.\)
Chọn \(b=12\Rightarrow a=5\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+1=0\\5x+12y-31=0\end{matrix}\right.\)
Câu 2:
Gọi M là giao điểm \(d_1;d_2\Rightarrow\) tọa độ M là nghiệm:
\(\left\{{}\begin{matrix}x+y-2=0\\-x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{1}{2};\frac{5}{2}\right)\)
Do \(d_1\) có hệ số góc \(-1\Rightarrow d_1\) tạo với chiều âm trục Ox 1 góc 45 độ
\(d_2\) có hệ số góc \(1\Rightarrow d_2\) tạo với chiều dương trục Ox 1 góc \(45^0\)
Mà \(\overrightarrow{n_{d1}}.\overrightarrow{n_{d2}}=0\Rightarrow d_1\perp d_2\)
\(\Rightarrow\) 3 giao điểm của \(d_1;d_2;Ox\) tạo thành một tam giác vuông cân tại M
\(\Rightarrow\) hai đường phân giác góc tạo bởi \(d_1\) và \(d_2\) lần lượt vuông góc với Ox và Oy
\(\Rightarrow\) Hai đường phân giác góc tạo bởi d1 và d2 lần lượt có pt là \(\left[{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
- TH1: tâm I của đường tròn nằm trên \(x=-\frac{1}{2}\Rightarrow I\left(-\frac{1}{2};b\right)\)
\(\Rightarrow\overrightarrow{IA}=\left(\frac{3}{2};-b\right)\Rightarrow R^2=IA^2=b^2+\frac{9}{4}\)
Mặt khác theo công thức khoảng cách:
\(d\left(I;d_1\right)=R\Rightarrow\frac{\left|-\frac{1}{2}+b-2\right|}{\sqrt{2}}=R\Rightarrow\frac{\left(b-\frac{5}{2}\right)^2}{2}=R^2\)
\(\Rightarrow b^2+\frac{9}{4}=\frac{\left(b-\frac{5}{2}\right)^2}{2}\Leftrightarrow2b^2+\frac{9}{2}-\left(b-\frac{5}{2}\right)^2=0\)
Nghiệm lại xấu nữa, bạn tự giải tiếp
TH2: tâm I của đường tròn nằm trên \(y=\frac{5}{2}\Rightarrow I\left(a;\frac{5}{2}\right)\) làm tương tự TH1
(C) có tâm I(-4;-2), bán kính R=5. Gọi phương trình đường thẳng tiếp tuyến đi qua M(2;1) là a(x-2)+b(y-1)=0
Khoảng cách từ tâm I tới đường thẳng này là $d=\dfrac{|-6a-3b|}{\sqrt{a^2+b^2}}=R=5$
$\(\Rightarrow\left(6a+3b\right)^2=25\left(a^2+b^2\right)\Leftrightarrow11a^2+36ab-16b^2=0\)$
Gọi \(M\left(2;y_M\right)\) là tiếp điểm của (C):
\(\Leftrightarrow2^2+y_M^2-12+2y_M=0\)
\(\Leftrightarrow y_M^2+2y_M-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y_M=2\\y_M=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}M\left(2;2\right)\\M\left(2;-4\right)\end{matrix}\right.\)
* Với M(2;2)
Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;3\right)\Rightarrow\overrightarrow{n}=\left(3;1\right)\)
\(\Rightarrow\left(D\right):3x+y-8=0\)
* Với M(2; -4)
Ta có: \(\overrightarrow{u}=\overrightarrow{IE}=\left(-1;-3\right)\Rightarrow\overrightarrow{n}=\left(-3;1\right)\)
\(\Rightarrow\left(D\right):-3x+y+4=0\)