Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto BC=(2;-5)
=>VTPT là (5;2)
Phương trình (d) là:
5(x+1)+2(y-2)=0
=>5x+5+2y-4=0
=>5x+2y+1=0
b: Gọi (C): x^2+y^2-2ax-2by+c=0
Theo đề, ta có:
\(\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+1^2-2a-2b+c=0\\9+16-6a+8b+c=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-4b+c=-1-4=-5\\-2a-2b+c=-2\\-6a+8b+c=-25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{8}\\b=-\dfrac{13}{4}\\c=-\dfrac{53}{4}\end{matrix}\right.\)
=>(C): x^2+y^2+19/4x+13/2y-53/4=0
=>x^2+2*x*19/8+361/64+y^2+2*y*13/4+169/16=1885/64
=>(x+19/8)^2+(y+13/4)^2=1885/64
a: vecto AB=(2;-1)
PTTS AB là:
x=1+2t và y=2-t
vecto AB=(2;-1)
=>VTPT là (1;2)
PTTQ của AB là:
1(x-1)+2(y-2)=0
=>x-1+2y-4=0
=>x+2y-5=0
c:PT đường cao CH là:
2(x-5)+(-1)(y-4)=0
=>2x-10-y+4=0
=>2x-y-6=0
Tọa độ hình chiếu của C trên AB là:
2x-y-6=0 và x+2y-5=0
=>C(17/5;4/5)
e: PT (C) có dạng là:
x^2+y^2-2ax-2by+c=0
Theo đề, ta có:
1+4-2a-4b+c=0 và 9+1-6a-2b+c=0 và 25+16-10a-8b+c=0
=>a=23/8; b=13/4; c=55/4
=>(C): x^2+y^2-23/4x-13/2x+55/4=0
=>x^2-2*x*23/8+529/64+y^2-2*x*13/4+169/16=325/64
=>(x-23/8)^2+(y-13/4)^2=325/64
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)
a) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}} = (4;3)\)
PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}} = (4;3)\) làm VTPT là:
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}} = 5\)
\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)
c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:
\({(x + 1)^2} + {(y - 3)^2} = 1\)
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
a: vecto AB=(2;1)
=>VTPT là (-1;2)
Phương trình AB là:
-1(x-2)+2(y-0)=0
=>-x+2y+2=0
vecto AC=(-1;2)
=>VTPT là (2;1)
PT AC là:
2(x-2)+1(y-0)=0
=>2x+y-4=0
vecto BC=(-3;1)
=>VTPT là (1;3)
Phương trình BC là:
1(x-4)+3(y-1)=0
=>x+3y-7=0
b: vecto BC=(-3;1)
=>AH có VTPT là (-3;1)
Phương trình AH là;
-3(x-2)+1(y-0)=0
=>-3x+6+y=0
c: Tọa độ I là trung điểm của AC là;
x=(2+1)/2=1,5 và y=(0+2)/2=1
vecto AC=(-1;2)
=>(d) có VTPT là (-1;2) và đi qua I(1,5;1)
Phương trình trung trực của AC là;
-1(x-1,5)+2(y-1)=0
=>-x+1,5+2y-2=0
=>-x+2y-0,5=0