Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm A(x;y) nằm bên trong (kể cả trên cạnh) của
Có 101 cách chọn x, 11 cách chọn y. Do đó số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n( Ω ) = 101 x 11
Gọi X là biến cố: “Các điểm A(x;y) thỏa mãn x + y ≤ 90”.
Vì
Vậy xác suất cần tính là
Chọn B
Ta có
Do đó
Ta cũng có => n(A) = 8
Vậy xác suất của biến cố A là P(A) = 8 21
Chọn C
Lời giải. Số các điểm có tọa độ nguyên thuộc hình chữ nhật là 7.3 = 21 điểm vì
Để con châu chấu đáp xuống các điểm M(x,y) có x + y < 2
thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA
Để M(x,y) có tọa độ nguyên thì
= Nếu x ∈ - 2 ; - 1 thì y ∈ 0 ; 1 ; 2
⇒ có 6 điểm
= Nếu x = 0 thì y ∈ 0 ; 1 ⇒ có 2 điểm
= Nếu x = 1 ⇒ y = 0 ⇒ có 1 điểm
⇒ có tất cả 6 + 2 +1 = 9 điểm thỏa mãn
Vậy xác suất cần tính P = 9 21 = 3 7
Đáp án A
Để con châu chấu đáp xuống các điểm M(x; y) có x + y < 2 thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA
Để M(x; y) có tọa độ nguyên thì x ∈ - 2 ; - 1 ; 0 ; 1 ; 2 , y ∈ { 0 ; 1 ; 2 }
Nếu x ∈ - 2 ; - 1 thì y ∈ { 0 ; 1 ; 2 } có 2.3 = 6 điểm
Nếu x = 0 thì y ∈ { 0 ; 1 } có 2 điểm
Nếu x =1 => y = 0 => có 1 điểm
=> có tất cả 6 + 2 + 1 = 9 điểm. Để con châu chấu nhảy trong hình chữ nhật mà đáp xuống các điểm có tọa độ nguyên thì x ∈ - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 , y ∈ { 0 ; 1 ; 2 } . Số các điểm M(x; y) có tọa độ nguyên là: 7.3 = 21 điểm. Xác suất cần tìm là: P = 9 21 = 3 7 .
a:
i:
x | 1/2 | 1 | 2 | 4 |
y | -1 | 0 | 1 | 2 |
ii:
Hàm số liên tục và đồng biến trên \(\left(0;+\infty\right)\)
\(\lim\limits_{x\rightarrow+\infty}log_2x=+\infty;\lim\limits_{x\rightarrow0^+}log_2x=-\infty\)
Tập giá trị: R
b:
x | 1/2 | 1 | 2 | 4 |
y | 1 | 0 | -1 | -2 |
Hàm số liên tục và nghịch biến trên \(\left(0;+\infty\right)\)
\(\lim\limits_{x\rightarrow+\infty}log_{\dfrac{1}{2}}x=-\infty;\lim\limits_{x\rightarrow0^+}log_{\dfrac{1}{2}}x=+\infty\)
Tập giá trị: R
i:
x | -2 | -1 | 0 | 1 | 2 |
y | 1/4 | 1/2 | 1 | 2 | 4 |
ii:
Hàm số liên tục và đồng biến trên R
\(\lim\limits_{x\rightarrow+\infty}2^x=+\infty;\lim\limits_{x\rightarrow-\infty}2^x=0\)
Tập giá trị: \((0;+\infty)\)
b:
bảng giá trị:
x | -2 | -1 | 0 | 1 | 2 |
y | 4 | 2 | 1 | 1/2 | 1/4 |
Hàm số liên tục và nghịch biến trên R
\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{2}\right)^x=0;\lim\limits_{x\rightarrow-\infty}\left(\dfrac{1}{2}\right)^x=+\infty\)
Tập giá trị: (0;+\(\infty\))
Đáp án C
Gọi H là trung điểm của AB. Do ∆ SAB đều nên SH ⊥ AB và
Mà (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD).
Từ
Ta có
Lại có
* Phương án A:
* Phương án B:
* Phương án C:
* Phương án D:
Đáp án D
Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là
n Ω = 101 x 11
Khi đó có 91 + 90 + . . . + 81 = 946 cặp (x;y) thỏa mãn
Vậy xác suất cần tính là