Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: vecto AB=(-4;-2)
=>VTPT là (2;4)=(1;2)
=>PTTQ của AB là 1(x-1)+2(y-6)=0
=>x-1+2y-12=0
=>x+2y-13=0
Vì (d)//AB nên (d): x+2y+c=0
Thay x=0 và y=3 vào (d), ta được:
c+0+6=0
=>c=-6
=>x+2y-6=0
Gọi phương trình đường thẳng AB có dạng là \(y=ax+b\)
Ta có \(A\left(5;-2\right)\) và \(B\left(0;3\right)\) thuộc đt AB nên ta có hpt :
\(-2=5a+b\)
\(3=b\)
Ta tính được \(a=-1,b=3\)
Vậy phương trình đường thẳng AB có dạng \(y=-x+3\)
\(\left(C\right):x^2+y^2+4x-6y-12=0\)
\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)
\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)
Kẻ IH vuông góc với AB.
\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)
Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)
\(\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)
Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.
Gọi I(a;b) là tâm của đường tròn (C).
*) Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.
Phương trình đường tròn (C) có dạng: (x-2 ) 2 + (y-b ) 2 = b 2
*) Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:
IB = 5 ⇒
⇒ (2 - 6 ) 2 + (b - 4 ) 2 = 25
⇒ 16 + (b - 4 ) 2 = 25
⇒ (b - 4 ) 2 = 9
+) Với b = 7, phương trình đường tròn (C) là (x - 2 ) 2 + (y - 7 ) 2 = 49
+) Với b = 1, phương trình đường tròn (C) là (x - 2 ) 2 + (y + 1 ) 2 = 1
Vậy phương trình đường tròn (C) là (x - 2 ) 2 + (y - 7 ) 2 = 49 hoặc (x - 2 ) 2 + (y + 1 ) 2 = 1.
phương trình đường thẳng của AB là \(\dfrac{x}{2}+\dfrac{y}{3}=-1\)