\(d:x+y-2=0\)

Viết phương trình của đường thẳng d' là ả...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

a) \(d_1:3x+2y+6=0\)

b) Giao của d và \(\Delta\)\(A\left(2;0\right)\). Lấy \(B\left(0;-3\right)\) thuộc d. Ảnh của B qua phép đối xứng qua đường thẳng \(\Delta\)\(B'\left(5;2\right)\). Khi đó d' chính là đường thẳng AB':\(2x-3y-4=0\)

NV
30 tháng 10 2020

Gọi \(M\left(x;y\right)\) là điểm bất kì trên d \(\Rightarrow x-y+1=0\) (1)

Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép đối xứng tâm A \(\Rightarrow M'\in d'\)

Ta có:

\(\left\{{}\begin{matrix}x'=2.5-x\\y'=2.\left(-2\right)-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10-x'\\y=-4-y'\end{matrix}\right.\)

Thế vào (1):

\(10-x'-\left(-4-y'\right)+1=0\)

\(\Leftrightarrow x'-y'-15=0\)

Vậy pt d' có dạng: \(x-y-15=0\)

24 tháng 5 2017

Dễ thấy d chứa điểm \(H\left(1;1\right)\)\(OH\perp d\). Gọi H' là ảnh của H qua phép quay tâm O góc \(45^0\) thì \(H=\left(0;\sqrt{2}\right)\)

Từ đó suy ra d' phải qua H' và vuông góc với O'. Vậy phương trình của d' là \(y=\sqrt{2}\)

9 tháng 8 2017

Gọi M′ ( x′ ; y′ ) ∈ d' là ảnh của M( x , y ) ∈ d qua phép tịnh tiến theo vecto ⃗v (2;3)

\(\Rightarrow\left\{{}\begin{matrix}x'=x+2\\y'=y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-3\end{matrix}\right.\)

do M (x' ; y') \(\in\) d nên

\(3x-5y+3=0\)

\(\Rightarrow3\left(x'-2\right)-5\left(y'-3\right)+3=0\)

\(\Leftrightarrow3x'-5y'+12=0\left(d'\right)\)

vậy \(M'\left(x';y'\right)\in d':3x'-5y'+12=0\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng