Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) tâm I(1;-3) bán kính \(R=4\)
Tiếp tuyến d vuông góc với 6x+8y-3=0 nên nhận \(\left(4;-3\right)\) là 1 vtpt
Tiếp tuyến d có dạng: \(4x-3y+c=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|4.1-3.\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
\(\Leftrightarrow\left|c+13\right|=20\Rightarrow\left[{}\begin{matrix}c=7\left(loại\right)\\c=-33\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\\c=-33\end{matrix}\right.\)
(d')//(d)
=>(d'): 4x-3y+c=0
(C): x^2-4x+4+y^2+6y+9-16=0
=>(x-2)^2+(y+3)^2=16
=>R=4; I(2;-3)
Theo đề, ta có: d(I;(d'))=4
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
=>|c+17|=4*5=20
=>c=3 hoặc c=-37
Bài 2:
a: \(R=d\left(I;d\right)=\dfrac{\left|-2\cdot3+1\cdot\left(-4\right)\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)
Phương trình (C) là:
(x+2)^2+(y-1)^2=2^2=4
Bài 1:
a: I thuộc Δ nên I(x;-2x-3)
IA=IB
=>IA^2=IB^2
=>\(\left(x+5\right)^2+\left(-2x-3-1\right)^2=\left(x+2\right)^2+\left(-2x-3-4\right)^2\)
=>x^2+10x+25+4x^2+16x+16=x^2+4x+4+4x^2+28x+49
=>26x+41=32x+53
=>-6x=-12
=>x=2
=>I(2;-7): R=IA=căn 113
Phương trình (C) là:
(x-2)^2+(y+7)^2=113
2: vecto IA=(7;-8)
Phương trình tiếp tuyến là:
7(x+5)+(-8)(y-1)=0
=>7x+35-8y+8=0
=>7x-8y+43=0
(x-1)^2+(y+2)^2=10
=>R=căn 10; I(1;-2)
Vì (d)//x+3y-5=0
nên (d): x+3y+c=0
Theo đề, ta có: d(I;(d))=can 10
=>\(\dfrac{\left|1\cdot1+3\cdot\left(-2\right)+c\right|}{\sqrt{1^2+3^2}}=\sqrt{10}\)
=>|c-5|=10
=>c=15 hoặc c=-5
1: Gọi I(0,y) là tâm cần tìm
Theo đề, ta có: IA=IB
=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)
=>y^2-10y+25+9=y^2+14y+49+1
=>-10y+34=14y+50
=>-4y=16
=>y=-4
=>I(0;-4)
=>(x-0)^2+(y+4)^2=IA^2=90
2: Gọi (d1) là đường thẳng cần tìm
Vì (d1)//(d) nên (d1): 4x+3y+c=0
Theo đề, ta có: d(I;(d1))=3 căn 10
=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)
=>|c-12|=15căn 10
=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)
(C): (x-1)^2+(y+2)^2=4
=>R=2; I(1;-2)
Vì (d)//Δ nên (d): 4x-3y+c=0
\(d\left(I;\left(d\right)\right)=2\)
=>\(\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=2\)
=>|c+4+6|=10
=>|c+10|=10
=>c=0 hoặc c=-20
=>4x-3y=0 hoặc 4x-3y-20=0
a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)
Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)
Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)
\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a-2b\right)^2=0\)
\(\Leftrightarrow a=2b\)
\(\Rightarrow\Delta:2x+y-5=0\)
b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+4\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)
a: (C): x^2-4x+4+y^2+6y+9=25
=>(x-2)^2+(y+3)^2=25
=>R=5; I(2;-3)
\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)
=>M thuộc (C)
vecto IM=(3;4)
Phương trình tiếp tuyến tại M là:
3(x-2)+4(y+3)=0
=>3x-6+4y+12=0
=>3x+4y+6=0
b: (d)//-3x+4y+3=0
=>(d): -3x+4y+c=0; I(2;-3)
d(I;(d))=5
=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)
=>|c-18|=25
=>c=43 hoặc c=-7
c: (d) vuông góc (-3x+4y+3)=0
=>(d): 4x+3y+c=0
I(2;-3)
\(d\left(I;\left(d\right)\right)=5\)
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)
=>|c-1|=25
=>c=26 hoặc c=-24
a) x2 + y2 – 4x + 8y – 5 = 0
⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25
⇔ (x – 2)2 + (y + 4)2 = 25.
Vậy (C) có tâm I(2 ; –4), bán kính R = 5.
b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:
(–1 – 2)2 + (0 + 4)2 = 32 + 42 = 52= R2
⇒ A thuộc đường tròn (C)
⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A
⇒ (d’) là đường thẳng đi qua A và vuông góc với IA
⇒ (d’) nhận là một vtpt và đi qua A(–1; 0)
⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.
c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).
(d) có là một vtpt; 1 VTCP là ud→(4; 3)
(Δ) ⊥ (d) ⇒ (Δ) nhận là một vtpt
⇒ (Δ): 4x + 3y + c = 0.
(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R
Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.
Tiếp tuyến của (C) vuông góc với (d):2x-y+27=0 => VTPT của tiếp tuyến k là (1;2)
=> (k): x + 2y + C = 0
Đường tròn (C): (x+6)2 + y2 = 5 có tâm I(-6;0), bán kính R=V5
k tiếp xúc với (C) <=> d(I,k) = V5 <=> | -6 + C | = 5 <=> C = 11 v C = 1
Vậy (k1): x + 2y + 11 = 0 và (k2): x + 2y + 1 = 0.