K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

Qua phép đối xứng tâm O biến điểm M(x; y) thuộc đường thẳng d thẳng điểm M’ (x’; y’) thuộc đường thẳng d’.

Ta có:  x ' = − x y ' = − y   ⇔ x = − x ' y = − y '

Vì điểm M thuộc d nên: 3x – 2y – 1 = 0

Suy ra:  3. (-x’) – 2(- y’)  -1 = 0 hay - 3x’ + 2y’ – 1=0

Vây phương trình đường thẳng d’  là  - 3x + 2y - 1= 0 

Đáp án B

24 tháng 5 2017

a) \(d_1:3x+2y+6=0\)

b) Giao của d và \(\Delta\)\(A\left(2;0\right)\). Lấy \(B\left(0;-3\right)\) thuộc d. Ảnh của B qua phép đối xứng qua đường thẳng \(\Delta\)\(B'\left(5;2\right)\). Khi đó d' chính là đường thẳng AB':\(2x-3y-4=0\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

11 tháng 1 2018

a) d 1 : 3x + 2y + 6 = 0

b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0

24 tháng 5 2017

Giao của d và d' với Ox lần lượt là \(A\left(-2;0\right)\)\(A'\left(8;0\right)\). Phép đối xứng qua tâm cần tìm biến A thành A' nên tâm đối xứng của nó là \(I=\left(3;0\right)\)

31 tháng 3 2017

Cách 1:

Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = {D_{Oy}}^{} (A), B' = {D_{Oy}}^{} (B)

Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0

Cách 2:

Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0

31 tháng 3 2017

Cách 1:

Lấy hai điểm A(0;2) và B (-1;-1) thuộc d. Gọi A' = {D_{Oy}}^{} (A), B' = {D_{Oy}}^{} (B)

Khi đó A' = (0;2), B' = (1;-1). Vậy d' có phương trình = hay 3x + y -2 =0

Cách 2:

Gọi M'(x', y') là ảnh của M (x;y) qua phép đối xứng trục Oy. Khi đó x' = -x và y' = y. Ta có M thuộc d ⇔ 3x-y+2 =0 ⇔ -3x' - y' + 2=0 ⇔ M' thuộc đường thẳng d' có phương trình 3x + y - 2 = 0

31 tháng 3 2017

Dễ thấy A' = {D_{o}}^{}(A) = (1;-3)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = \(D_O\) (B) = (3;0) và C' = \(D_O\) (C) = (1;-1). suy ra phương trình của d' là: \(\dfrac{x-3}{1-3}=\dfrac{y}{-1}\) hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0

31 tháng 3 2017

Dễ thấy A' = \({D_{o}}^{}(A) = (1;-3)\)

Để tìm ảnh của đường thẳng d ta có thể dùng các cách sau:

Cách 1:

Đường thẳng d đi qua B(-3;0) và C (-1;1). Do đó ảnh của d qua phép đối xứng tâm O là đường thẳng d' đi qua B' = DODO (B) = (3;0) và C' = DODO (C) = (1;-1). suy ra phương trình của d' là: x−31−3=y−1x−31−3=y−1 hay x - 2y - 3 = 0

Cách 2:

Đường thẳng d đi qua B(-3;0), d' là ảnh của d qua phép đối xứng tâm O nên nó song song với d. Do đó d' có phương trình x- 2y +C =0, nó đi qua B' =( 3;0) là ảnh của B qua phép đối xứng tâm O/ Do đó 3+C=0. Từ đó suy ra C = -3

Vậy ảnh của d qua phép đối xứng tâm O là đường thẳng d' có phương trình x-2y-3=0

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng