Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
(d) biến thành chính nó khi vecto tịnh tiến cùng phương với (d). Mà (d) có một VTCP là 1 ; 2
Đáp án B
Vecto tịnh tiến cùng phương với d. Một vecto chỉ phương của d là u d → = 1 ; 2 .
Đáp án A
Vecto tịnh tiến cùng phương với d. Một vecto chỉ phương của d là
Chọn C
Phép tịnh tiến theo v → biến đường thẳng d thành chính nó khi và chỉ khi v → = 0 → hoặc v → là một vectơ chỉ phương của d. Từ phương trình đường thẳng d, ta thấy v → 1 ; 2 là một vectơ chỉ phương của d nên chọn đáp án C.
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Chọn đáp án A.
Phép tịnh tiến theo v → biến đường thẳng d thành chính nó khi vectơ v → cùng phương với vectơ chỉ phương của d. Mà d có VTCP v → = 2 ; 4 .