K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2020
https://i.imgur.com/xXrsMio.jpg
NV
22 tháng 5 2020

Đường thẳng d nhận \(\left(8;-6\right)=2\left(4;-3\right)\) là 1 vtpt nên cũng nhận các vecto có dạng \(\left(4k;-3k\right)\) với \(k\ne0\) là vtpt

\(\left(4k\right)^2+\left(-3k\right)^2=25\)

\(\Leftrightarrow25k^2=25\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

- Với \(k=1\) ta được vecto \(\left(4;-3\right)\) tung độ âm (loại)

- Với \(k=-1\) ta được vecto \(\left(-4;3\right)\) thỏa mãn

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Xét đường thẳng \(\Delta :x + 2y - 5 = 0\)

Vecto \(\overrightarrow n  = (1;2)\) là một VTPT của \(\Delta \) => A đúng => Loại A

Vecto \(\overrightarrow u  = ( - 2;1)\) là một VTCP của \(\Delta \) => B đúng => Loại B

Đường thẳng \(\Delta \)có hệ số góc \(k =  - \frac{a}{b} =  - \frac{1}{2}\) => D sai => Chọn D

Chọn D.

\(3.\)

\(-2x^2+3x+2\ge0\)

\(\Leftrightarrow-\left(x-2\right)\left(2x+1\right)\ge0\)

\(\Leftrightarrow\left(2-x\right)\left(2x+1\right)\ge0\)

Giải bất phương trình ra được: \(\frac{-1}{2}\le x\le2\)

Vậy \(x\in\left\{\frac{-1}{2};2\right\}\)

\(5.\)

Đường thẳng đã cho song song với đường thẳng \(2x+y+2020=0\)

<=> Đường thẳng đã cho có véc tơ pháp tuyến là \(n\left(2;1\right)\)

Mà đường thẳng đã cho đi qua \(M\left(3;0\right)\)nên ta có phương trình:

\(2\left(x-3\right)+y=0\)

\(2x+y-6=0\)

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn

13 tháng 2 2016

d1 có 1 vtpt là \(\overrightarrow{n1}\)(2;-1);d2 có 1 vtpt là \(\overrightarrow{n2}\)(3;6)

Ta có \(\overrightarrow{n1}\)\(\times\)\(\overrightarrow{n2}\)=2\(\times\)3-1\(\times\)6=0 nên d1 vuông góc d2 và d1 cắt d2 tại I(I khác P)

Gọi d là đườg thẳng đi qua P;d:A(x-2)+B(y+1)=0\(\Leftrightarrow\)Ax+By-2A+B=0

d cắt d1;d2 tạo thành một tam giác cân có đỉnh I\(\Leftrightarrow\)d tạo với d1(hoặc d2) một góc 45

\(\Leftrightarrow\)\(\frac{\left|2A-B\right|}{\sqrt{A^2+B^2}\sqrt{2^2+\left(-1\right)^2}}\)=\(\cos45\)

\(\Leftrightarrow\)\(3A^2\)-8AB-\(3B^2\)=0

\(\Leftrightarrow\)A=3B hoặc B=-3A

Nếu A=3B ta có d:3x+y-5=0

Nếu B=-3A to có d:x-3y-5=0

Vậy......

NV
20 tháng 12 2020

a.

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{2-4}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{1+5}{2}=3\end{matrix}\right.\)

\(\Rightarrow I\left(-1;3\right)\)

b.

Do C thuộc trục hoành, gọi tọa độ C có dạng \(C\left(c;0\right)\)

Do D thuộc trục tung, gọi tọa độ D có dạng \(D\left(0;d\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c-2;-1\right)\\\overrightarrow{DB}=\left(-4;5-d\right)\Rightarrow2\overrightarrow{DB}=\left(-8;10-2d\right)\end{matrix}\right.\)

Để \(\overrightarrow{AC}=2\overrightarrow{DB}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c-2=-8\\-1=10-2d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-6\\d=\dfrac{11}{2}\end{matrix}\right.\)

Vậy \(C\left(-6;0\right)\) và \(D\left(0;\dfrac{11}{2}\right)\)