Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tọa độ trung điểm $M$ của $AB$ là:
\(\left(\frac{x_A+x_B}{2}; \frac{y_A+y_B}{2}\right)=\left(\frac{2+0}{2}; \frac{5+(-7)}{2}\right)=(1;-1)\)
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
Gọi tọa độ trực tâm H là \(H\left(x;y\right).\)
Vì H là trực tâm của △ ABC. \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}\perp\overrightarrow{BC.}\\\overrightarrow{BH}\perp\overrightarrow{AC.}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0.\\\overrightarrow{BH}.\overrightarrow{AC}=0.\end{matrix}\right.\)
Ta có: \(\overrightarrow{AH}=\left(x-2;y-4\right);\overrightarrow{BC}=\left(-1;-5\right).\)
\(\overrightarrow{BH}=\left(x+1;y-2\right);\overrightarrow{AC}=\left(-4;-7\right).\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(-1\right)+\left(y-4\right)\left(-5\right)=0.\\\left(x+1\right)\left(-4\right)+\left(y-2\right)\left(-7\right)=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-x+2-5y+20=0.\\-4x-4-7y+14=0.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-5y=-22.\\-4x-7y=-10.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8.\\y=6.\end{matrix}\right.\) \(\Rightarrow H\left(-8;6\right).\)
a) \(\overrightarrow{AB}=\left(2;6\right)\)
\(\overrightarrow{AC}=\left(-1;7\right)\)
ta có:
\(\dfrac{2}{-1}\ne\dfrac{6}{7}\)
=> 3 điểm A,B,C không thẳng hàng
Vậy A,B,C là 3 đỉnh của một tam giác
b)
tọa độ trung điểm I của AB:
gọi I(xI ; yI )
ta có:
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{1+3}{2}=2\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{\left(-2\right)+4}{2}=1\end{matrix}\right.\)
\(\Rightarrow I\left(2;1\right)\)
*tọa độ trọng tâm G của tam giác ABC
gọi G (xG; yG)
ta có:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+3+0}{3}=\dfrac{4}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{\left(-2\right)+4+5}{3}=\dfrac{7}{3}\end{matrix}\right.\)
\(\Rightarrow G\left(\dfrac{4}{3};\dfrac{7}{3}\right)\)
c) Gọi D(xD; yD)
tọa độ điểm D đối xứng với B qua C
=> C là trung điểm của DB
ta có:
\(\left\{{}\begin{matrix}x_C=\dfrac{x_D+x_B}{2}\\y_C=\dfrac{y_D+y_B}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_D=2x_C-x_B=2.0-3=-3\\y_D=2y_C-y_B=2.5-4=6\end{matrix}\right.\)
=> D(-3 ; 6)
\(\left\{{}\begin{matrix}x_{B'}-5=2\\y_{B'}+6=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_{B'}=7\\y_{B'}=-2\end{matrix}\right.\)
cho A(1;2) và B(3;8)
\(\overrightarrow{AB}=\left(3-1;8-2\right)=\left(2;6\right)\)
vecto AB=(3-1;8-2)
=>vecto AB=(2;6)