Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phân tích.
- Ta thấy A thuộc đường phân giác trong góc A: x - 3 y + 5 = 0 giờ chỉ cần viết được phương trình AC là tìm được A.
- Trên AC đã có một điểm N, cần tìm thêm một điểm nữa. Chú ý khi lấy M’ đối xứng với M qua phân giác trong ta có M’ thuộc cạnh AC.
- Tìm M’ viết được phương trình AC từ đó suy ra A. Có A, M viết được phương trình AB.
- Gọi B, C và tham số hóa dựa vào B thuộc AB, C thuộc AC. Áp dụng công thức trọng tâm sẽ tìm ra được tọa độ B, C.
Hướng dẫn giải.
Gọi M ' ∈ A C là điểm đối xứng của M qua phân giác trong góc A, gọi I là giao điểm của MM' với phân giác trong góc A → I là trung điểm MM’.
Phương trình MM’ là: 3 x + y - 11 = 0
Toạ độ điểm I là nghiệm của hệ:
M’ đối xứng với M qua
Đường thẳng AC qua N và M’ nên có phương trình:
Tọa độ A là nghiệm của hệ:
Đường thẳng AB đi qua A, M nên có phương trình:
x + y - 3 = 0
Gọi
Do G là trọng tâm tam giác ABC nên ta có:
Vậy tọa độ các đỉnh của tam giác ABC là:
Đáp án A.
(P) đi qua A và G nên (P) đi qua trung điểm của BC là điểm
M − 3 2 ; 1 2 ; − 2 .
Ta có: A M → = − 5 2 ; 5 2 ; − 5 cùng phương với véc tơ − 1 ; 1 ; − 2
Mặt phằng (ABC) có vác tơ pháp tuyến:
n 1 → = A B → ; A C → = − 5 ; 2 ; − 4 ; 0 ; 3 ; − 6 = 0 ; − 30 ; − 15
cùng phương với véc tơ 0 ; 2 ; 1 .
Vì (P) chứa AM và vuông góc với (ABC) nên (P) có véc tơ chỉ phương:
n ( P ) → = − 1 ; 1 ; − 2 ; 0 ; 2 ; 1 = − 5 ; − 1 ; 2 .
Ngoài ra (P) qua A 1 ; − 2 ; 3 nên phương trình (P):
− 5 x − 1 − 1 y + 2 + 2 z − 3 = 0 ⇔ 5 x + y − 2 z + 3 = 0
Đáp án B
Ta có M(2;-1), N(1;4), O(0;0).
G là trọng tâm tam giác OMN nên ta có
Vậy G(1;1) là điểm biểu diễn số phức z 3 = 1 + i
n