Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuyển pt d về dạng tổng quát: \(3x+y-7=0\)
Thay tọa độ điểm A vào: \(\Rightarrow3.1+2-7=-1< 0\)
Thay tọa độ điểm B vào, để 2 điểm nằm cùng phía so với d thì:
\(-6+m-7< 0\Rightarrow m< 13\)
\(\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2m^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=m^2\end{matrix}\right.\)
Theo Viet đảo; x và y là nghiệm của: \(t^2-2t+m^2=0\) (1)
Để hệ có nghiệm \(\Leftrightarrow\) (1) có nghiệm
\(\Leftrightarrow\Delta'=1-m^2\ge0\Rightarrow-1\le m\le1\)
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình AB: \(1\left(x+3\right)+2\left(y-5\right)=0\Leftrightarrow x+2y-7=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{9}{5};\frac{13}{5}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-\frac{24}{5};\frac{12}{5}\right)=6\left(-\frac{4}{5};\frac{2}{5}\right)\\\overrightarrow{IB}=\left(-\frac{4}{5};\frac{2}{5}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IA}=6\overrightarrow{IB}\Rightarrow\frac{IA}{IB}=6\)
M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)
MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4
MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5
MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4
= ( 2t + 1/2 )2 + 35/4 >= 35/4
vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)
#mã mã#
Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:
\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)
\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)
\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)
\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB
c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB
b)
A. x-y+2=0
B. x+2y=0
C.2x-2y+10=0
D. x-y+100=0
c)
A. x-3y+4=0
B. -x+y+10=0
C. x+y=0
D. 5x-y+1=0
Vì $M$ nằm trên đường thẳng $d$ nên gọi tọa độ điểm $M$ là \((1-2t, -2+4t)\)
Khi đó:
\(AM=\sqrt{(1-2t-2)^2+(-2+4t+5)^2}=\sqrt{(-1-2t)^2+(4t+3)^2}\)
\(=\sqrt{20t^2+28t+10}=\sqrt{20(t+\frac{7}{10})^2+\frac{1}{5}}\)
\(\geq \sqrt{\frac{1}{5}}\) khi và chỉ khi \(t+\frac{7}{10}=0\Leftrightarrow t=-\frac{7}{10}\)
Vậy $AM$ ngắn nhất khi \(t=-\frac{7}{10}\Rightarrow M=(\frac{12}{5}, \frac{-24}{5})\)
P/s: Mình không hiểu đề bài cho dữ kiện B, C làm gì? k là số nào?
vì bài có câu a,b,c,d mà mấy câu đó mình biết làm rồi, còn câu này mình k chắc chắn lắm nên đăng lên. Cảm ơn bạn nha.
Gọi \(M\left(2+2t;3+t\right)\)
M có tọa độ nguyên \(\Leftrightarrow t\) nguyên
\(\overrightarrow{AM}=\left(2+2t;2+t\right)\) \(\Rightarrow AM=\sqrt{\left(2+2t\right)^2+\left(2+t\right)^2}=5\)
\(\Leftrightarrow5t^2+12t-17=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{17}{5}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow M\left(4;4\right)\)
\(\left\{{}\begin{matrix}x=2+t\\y=1-3t\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6+3t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow3x+y=7\Rightarrow3x+y-7=0\)
Vậy (d) có pt tổng quát là: \(3x+y-7=0\)
A và B nằm cùng phía đối với d khi và chỉ khi:
\(\left(3.1+2-7\right)\left(3.\left(-2\right)+m-7\right)>0\)
\(\Leftrightarrow-2\left(m-13\right)>0\)
\(\Rightarrow m< 13\)