Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).
Câu b) sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.
Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.
a)
Ta cũng có:
⇒ (MIJ) ∩ (ABD) = d = Mt và Mt // AB // IJ
b) Ta có: Mt // AB ⇒ Mt ∩ BD = N
Vì K ∈ IN ⇒ K ∈ (BCD)
Và K ∈ JM ⇒ K ∈ (ACD)
Mặt khác (BCD) ∩ (ACD) = CD do đó K ∈ CD. Do vậy K nằm trên hai nửa đường thẳng Cm và Dn thuộc đường thẳng CD. ( Để ý rằng nếu M là trung điểm của AD thì sẽ không có điểm K.)
c) Ta có:
Mà
Ta có \(\frac{MA}{MB}=k\Leftrightarrow MA^2=k^2MB^2\Leftrightarrow\overrightarrow{MA^2}=k^2\overrightarrow{MB^2}\)
\(\Leftrightarrow\left(\overrightarrow{MA}-k\overrightarrow{MB}\right)\left(\overrightarrow{MA}+k\overrightarrow{MB}\right)=0\)
Gọi P, Q là các điểm thỏa mãn \(\overrightarrow{PA}.\overrightarrow{MQ}=0\Leftrightarrow MP\perp MQ\)
Từ đó suy ra tập hợp tất cả các điểm M cần tìm là đường tròn đường kính PQ
* Với k=1,quỹ tích cần tìm là đường trung trực (tương ứng mặt phẳng trung trực, với bài toàn trong không gian) của đoạn thẳng AB
* Đường tròn tìm được trong bài trên được gọi là đường tròn Apolonius
* Với bài toàn ở trong không gian, tương tự như vậy, ta cũng thu được quỹ tích là mặt cầu đường kính PQ, và mặt cầu đó cũng được gọi là mặt cầu Apolpnius
M Q I A P B