Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Số cách chọn ra 3 điểm từ 2n điểm đã cho là C 2 n 3 suy ra số mặt phẳng được tạo ra là C 2 n 3 .
Do trong 2n điểm đã cho có n điểm đồng phẳng nên có C n 3 mặt phẳng trùng nhau.
Suy ra số mặt phẳng được tạo thành từ 2n điểm đã cho là C 2 n 3 − C n 3 + 1 .
Chọn đáp án D.
Mỗi cách lấy có thứ tự hai điểm trong 2019 điểm đã cho ta xác định được một vectơ. Vì vậy, từ 2019 điểm phân biệt, ta xác định được A 2019 2 vecto khác 0 →
Đáp án B.
Từ 2 điểm phân biệt có thể tạo được 2 vecto nên số vecto tạo ra được là A 10 2 .
Chọn đáp án C
Mặt cầu (S) có tâm I(4;3;3) và bán kính R = 4. Gọi I’ là hình chiếu của I trên mặt phẳng α .
Đường thẳng I I ' đi qua I(4;3;3) và nhận n = ⇀ 1 ; 1 ; 1 làm vectơ chỉ phương nên có phương trình là:
Tọa độ điểm I’ thỏa mãn hệ
⇔ t = - 2 . Suy ra I’(2;1;1).
Gọi hình tròn (C) bán kính r là thiết diện của khối cầu (S) khi cắt bởi mặt phẳng α . Khi đó I’ là tâm của đường tròn (C).
Ta có I M = 14 < 4 = R và M ∈ α nên điểm M thuộc miền trong của đường tròn (C) (M nằm trong hình trong hình tròn).
Do đường thẳng d ⊂ α , d đi qua M và d cắt mặt cầu tại hai điểm A, B nên d cắt đường tròn (C) tại hai điểm A, B.
Phương tích của điểm M với đường tròn (C): M A . M B = r 2 - I ' M 2 .
Do r không đổi nên r 2 - I ' M 2 không đổi ⇒ M A . M B không đổi.
Lại có
Dấu “=” xảy ra khi MA = MB hay A B ⊥ M I ' .
Mà A B ⊥ M I ' nên đường thẳng AB có một vectơ chỉ phương là u ⇀ = I I ' ; ⇀ M I ' ⇀ = 2 ; - 4 ; 2 (cùng phương với vectơ u 2 ⇀ )
Đáp án C.
- Tam giác ABC tạo thành có 2 cạnh cắt trục tọa độ khi B; C thuộc 1 góc phần tư, A thuộc góc phần tư khác:
Đáp án A
Lấy 3 đỉnh trong 10 điểm trên có C 10 3 = 120 cách
Lấy 3 đỉnh trong 4 điểm thẳng hàng có C 4 3 = 4 cách
Do đó, số tam giác cần tính là 120 − 4 = 116
Đáp án D
Phương pháp:
Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn điểm đầu là 2018 cách.
Số cách chọn điểm cuối là 2017 cách (trừ vector không).
Vậy có 2018 × 2017 = 4070306 cách