Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách chọn 2 bạn từ 7 bạn là \(C_{7}^2 \Rightarrow n\left( \Omega \right) = C_{7}^2 = 21\)
Gọi A là biến cố: “Hai bạn được chọn có một bạn nam và một bạn nữ”.
Cách chọn một bạn nam là: 3 cách chọn
Cách chọn một bạn nữ là: 4 cách chọn
Theo quy tắc nhân ta có \(n\left( A \right) = 3.4 = 12\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).
Chọn A
a. \(C^1_7=7\left(cách\right)\)
b. \(C^1_3=3\left(cách\right)\)
c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)
a) Ba cách sắp xếp bốn bạn trên theo thứ tự
- Hà, Mai, Nam, Đạt.
- Hà, Mai, Đạt, Nam
- Hà, Đạt, Mai, Nam
Chú ý: Có thể chọn các cách xếp khác, không nhất thiết phải giống trên.
b) Ta thực hiện các bước:
- Chọn bạn đứng đầu có 4 cách
- Chọn bạn đứng thứ hai có 3 cách
- Chọn bạn đứng thứ ba có 2 cách
- Chọn bạn đứng cuối có 1 cách
Vậy có 4.3.2 = 24 cách sắp xếp thứ tự bốn bạn trên để tham gia phỏng vấn.
a) Số cách chọn 4 bạn trong 10 bạn nam là: \(C_{10}^4= 210\)
b) Số cách chọn 4 bạn trong tổng 17 bạn (không phân biệt nam, nữ) là: \(C_{17}^4= 2380\)
c) Số cách chọn 4 bạn, trong đó có 2 bạn nam và 2 bạn nữ là: \(C_{10}^2.C_7^2=45. 21= 945\)
Chọn A có 1 cách, chọn B có 1 cách
Chọn 2 bạn bất kì từ 6 bạn còn lại (4 nữ và 2 nam): \(C_6^2\) cách
Vậy có \(1.1.C_6^2=15\) cách
Việc phân công các bạn tình nguyện làm các việc trên gồm 3 công đoạn
Công đoạn 1: Chọn 3 bạn để hỗ trợ đi lại, mỗi cách chọn 3 bạn từ nhóm 7 bạn để làm công việc này là một tổ hợp chập 3 của 7 phần tử. Do đó, số cách chọn 3 bạn làm công việc hỗ trợ đi lại là: \(C_7^3 = \frac{{7!}}{{3!.4!}} = 35\) (cách)
Công đoạn 2: Chọn 2 bạn để hỗ trợ tắm rửa, mỗi cách chọn 2 bạn từ nhóm 4 bạn còn lại để làm công việc này là một tổ hợp chập 2 của 4 phần tử. Do đó, số cách chọn 2 bạn làm công việc hỗ trợ tắm rửa là: \(C_4^2 = \frac{{4!}}{{2!.2!}} = 6\) (cách)
Công đoạn 3: Chọn 2 bạn để hỗ trợ ăn uống từ 2 bạn cuối cùng, có 1 cách duy nhất
Áp dụng quy tắc nhân, ta có số cách phân công các bạn trong nhóm làm công việc trên là \(35.6.1 = 210\) (cách)
TH1: 2 bạn lớp 10A, 1 bạn lớp 10B, 1 bạn lớp 10C có số cách chọn là:
\(C_{30}^2\). 35. 32 = 487200( cách)
TH2: 1 bạn lớp 10A, 2 bạn lớp 10B, 1 bạn lớp 10C có số cách chọn là:
30.\(C_{35}^2\). 32 = 571200 (cách)
TH3: 1 bạn lớp 10A, 1 bạn lớp 10B, 2 bạn lớp 10C có số cách chọn là:
30. 35.\(C_{32}^2\) = 520800 (cách)
Vậy số cách lựa chọn là: 487200+ 571200 + 520800= 1579200 cách.
a) Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)
b) Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)
c) Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)
Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)
a, Có 5 cách chọn nhóm trình bày thứ nhất.
b, Sau khi đã chọn nhóm trình bày thứ nhất, có 4 cách để chọn nhóm trình bày thứ hai.
c, Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, có 3 cách để chọn nhóm trình bày thứ ba.
d, Theo quy tắc nhân, ta có số chỉnh hợp được tạo ra là: \(5.4.3 = 60\)
a) Bước 1: Chọn 1 bạn từ 4 bạn trên: có 4 cách
Bước 2: Chọn 1 bạn từ 3 bạn còn lại
Do hai bạn có vai trò như nhau nên ta chia kết quả cho 2 để loại trường hợp trùng.
Có 4.2: 2 = 6 cách chọn hai bạn từ 4 bạn trên.
b) Chọn nhóm trưởng: có 4 cách
Chọn nhóm phó: có 3 cách
Theo quy tắc nhân , có 4.3 = 12 cách chọn hai bạn, trong đó một bạn làm nhóm trường, một bạn làm nhóm phó.