Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ta có G là trọng tâm của tam giác ABC.
\(\hept{\begin{cases}\Rightarrow BH=GH=GD\\\Rightarrow EG=GK=KC\end{cases}}\)
hay G là trung điểm của EK và HD.
tứ giác EDKH có 2 đường chéo cắt nhau tại trung điểm mỗi đường
do đó tứ giác EDKH là hình bình hành.
b) để hình bình hành EDKH là hình chữ nhật thì EK=HD
⇒BD=EC⇒ΔABCcân
vậy để hình bình hành EDKH là hình chữ nhật thì tam giác ABC cân
c) vẽ đường cao AI vuông góc với BC.
khi đó AI cũng là đường trung tuyến.
\(\Rightarrow AG=\frac{2}{3}AI\)
ta có :\(\hept{\begin{cases}BE=AE\\AD=DC\end{cases}}\) nên ED là đường trung bình của tam giác ABC.
⇒\(\hept{\begin{cases}ED//BC\\2ED=BC\end{cases}}\)
vì ED//BC và AI⊥BC nên ED⊥AI
đồng thời EH⊥ED nên EH//AI.
ta có: \(\hept{\begin{cases}EH//AI\\BE=EA\end{cases}}\)\(\Rightarrow AH=\frac{AG}{2}\)
hay \(EH=\frac{\frac{2}{3}AI}{2}=\frac{1}{3}AI\Leftrightarrow3EH=AI\)
\(S\Delta ABC=\frac{AI.BC}{2}=\frac{3EH.2ED}{2}=3EH.ED\)=\(3S_{EDHK}\)
vậy\(\frac{S_{EDHK}}{S_{\Delta ABC}}=\frac{1}{3}\)
CHÚC BẠN HỌC TỐT
tui chỉ làm phần d thôi nha, mấy câu trên cậu tự chứng minh nhé
Hình tự vẽ
Lấy M là trung điểm của CK
mà có I là tđ của HK
suy ra MI là đường trung bình tam giác HKC và MI song song với CH
mà CH lại vuông góc với HF ( tự c/m) nên MI vuông góc với HF
Xét tam giác HFM có I là trực tâm ( tự ghi rõ ) suy ra FI vuông góc với HM mà có
M là tđ CK, H là tđ BC ( tự c/m) suy ra đường trung bình nên HM song song với BK suy ra đpcm
tui chỉ ghi qua thui, cậu tự trình bày rõ ràng nhé
mấy cái tự c/m ko dài đâu, đều hiện lên trên hình cậu vẽ rùi, đều có sẵn chỉ cần vài dòng thui, đừng lười, THI TỐT NHẾ
MAI TUI THI TOÁN VỚI ANH ĐÓ, THANKS VÌ ĐỀ BÀI RẤT HAY NHA.
a, bn dựa vào hình nha
b,bn kham khảo trên h
c, Vì EFKH là hinhg bình hành nên để EFKH là hình chữ nhật thì EH⊥EF
Nối AG.
Ta lại có: EH//AG (EH là đường TB)
Và EH⊥EF EF⊥AG AG⊥BC (EF//BC)
mà ta đã có AG là đường trung tuyến của ΔABC
ΔABC cân tại A
Vâỵ để EFKH là hình chữ nhật thì tam giác ABC phải cân tại A.
Kéo dài AG cắt BC tại I
Khi đó SEFKH=EH.EF=12AG.12BC=14.23AI.BC=16AI.BC
Và SABC=BC.AI (vì ta đã CM được AI là đường cao)
SEFKHSABC=16AI.BCBC.AI=16
Vậy SEFKH=16SABC
Những gì mình làm chỉ có vậy thôi chúc bn hc tốt
a) E là trung điểm AB, F là trung điểm AC
=> EF là đường trung bình của tam giác ABC
=> EF//BC
=> EFCB là hình bình hành
b) H là trung điểm BG, K là trung điểm CG
=> HK là đường trung bình của tam giác GBC
=> HK//=\(\frac{1}{2}\)BC
mà EF//=\(\frac{1}{2}\) BC ( vì EF là đường trung bình của tam giác ABC )
=> HK//=EF
=> HKEF là hình bình hành
c) Để EFHK là hình chữ nhật
ĐK là HE vuông EF (1)
Vì H là trung điểm BG
E là trung điểm AB
=> HE là đường trung bình BAG
=> EH//AG (2)
mà EF//BC (3)
1, 2, 3 => AG vuông BC (4)
Mặt khác G là giao điểm 2 đường trung tuyến CE, BFcủa tam giác ABC
=> G là trọng tâm
=> AG là đường trung tuyến (5)
4, 5 => Tam giác ABC cân tại A
Vậy để EFKH là hình chữ nhật thì tam giác ABC cân tại A
Gọi M là giao điểm của BC
=> Diện tích tam giác ABC :=\(\frac{1}{2}\)AM. BC
Diện tích EFKH := EF.EH=\(\frac{1}{2}\)BC.\(\frac{1}{2}\)AG=\(\frac{1}{2}\)BC. \(\frac{1}{2}\).\(\frac{2}{3}\) AM=\(\frac{1}{6}\)AM.BC =\(\frac{1}{3}\)diện tíc ABC
=> Tự so sánh nhé!
b)
Ta Có
Bx//ÁC Và Cy//AB
=>Tứ giác ABMC là hình bình hành
má \(\widehat{A}\)=90
=>tứ giác ABMC là hình chữ nhật
a)E,K lần lượt là trung điểm AB,AC.
=>EK là đường trunug bình của ∆ABC
=>EK//BC