K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Lời giải:
Gọi tọa độ của điểm $A'$ là $(a,b,c)$

Vì $A'B'C'D'$ là hình bình hành nên theo tính chất hình bình hành ta có:

\(\overrightarrow{A'B'}+\overrightarrow{A'D'}=\overrightarrow{A'C'}\)

Mà: \(\overrightarrow{A'C'}=\overrightarrow{AC}; \overrightarrow{A'D'}=\overrightarrow{AD}\) nên:

\(\overrightarrow{A'B'}+\overrightarrow{AD}=\overrightarrow{AC}\)

\(\Leftrightarrow (-2-a,1-b,1-c)+(6,3,3)=(7,0,-1)\)

\(\Leftrightarrow \left\{\begin{matrix} -2-a+6=7\\ 1-b+3=0\\ 1-c+3=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=4\\ c=5\end{matrix}\right.\)

Vậy tọa độ điểm A' là (-3,4,5)

AH
Akai Haruma
Giáo viên
20 tháng 11 2020

Hoàng Quỳnh Hương: mình đã sửa, bạn coi lại nhé :''>

24 tháng 11 2019

Chọn A.

23 tháng 10 2018

22 tháng 5 2017

Đáp án B

Tọa độ trọng tâm G của tam giác A'B'C là G(2;1;-2) 

21 tháng 4 2018

Đáp án D

16 tháng 12 2018

3 tháng 12 2019

Đáp án B

Phương pháp:

Hai vectơ 

Cách giải:

Gọi  điểm  B x 0 ; y 0 ; z 0   là điểm cần tìm. Khi đó

8 tháng 9 2018

Đáp án D

Ta có:  

20 tháng 3 2017

Chọn A

Gọi A(a;0;0);B(0;b;0);C(0;0;c)

Phương trình mặt phẳng (P) có dạng:

Vì M là trực tâm của tam giác ABC nên:

Khi đó phương trình (P): 3x+2y+z-14=0.

Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.