Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz.
Suy ra A(1;0;0), B(0;2;0), C(0;0;3)
Phương trình:
Đáp án B
Vì OA, OB, OC đôi một vuông góc và M là trực tâm tam giác ABC => OM ⊥ (ABC)
Suy ra mp(ABC) nhận O M → làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)
Vậy phương trình mp(P):
<=> x +2y+3z -14=0
Chọn A
Gọi A(a;0;0);B(0;b;0);C(0;0;c)
Phương trình mặt phẳng (P) có dạng:
Vì M là trực tâm của tam giác ABC nên:
Khi đó phương trình (P): 3x+2y+z-14=0.
Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.
Đáp án B
Phương pháp
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a,b,c>0) =>OA =a, OB =b, OC=c
Viết phương trình mặt phẳng (P)
Cách giải :
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a,b,c>0) =>OA =a, OB =b, OC=c
Khi đó phương trình mặt phẳng (P) là
Vậy phương trình mặt phẳng (P) là
Chọn D
Vì A thuộc Ox nên A(a;0;0).
Vì B thuộc Oy nên B(0;b;0).
Vì C thuộc Oz nên C(0;0;c).
G là trọng tâm tam giác ABC khi và chỉ khi