K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

25 tháng 8 2018

 

5 tháng 5 2018

Chọn C.

*) Gọi A = d1 ∩ (α)

A ∈ d1 ⇒ A(2-a;1+3a;1+2a)

Mà điểm A thuộc mp(α) nên thay tọa độ điểm A vào phương trình mặt phẳng ta được

(2 - a) + 2(1 + 3a) – 3(1 + 2a) – 2= 0

2 – a + 2 + 6a – 3 – 6a – 2 = 0

⇒ a = -1 ⇒ A(3;-2;-1)

*) Gọi B = d2 ∩ (α)

B ∈ d2 ⇒ B(1-3b;-2+b;-1-b)

Mà điểm B thuộc mp(α) nên thay tọa độ điểm B vào phương trình mặt phẳng ta được:

(1 - 3b) + 2(-2 + b) - 3(-1 - b) - 2 = 0

1- 3b – 4 + 2b + 3 + 3b - 2 = 0

⇔ 2b - 2 = 0 ⇔ b = 1 ⇒ B(-2;-1;-2)

*) Đường thẳng d đi qua điểm A(3;-2;-1) và có vectơ chỉ phương  

Vậy phương trình chính tắc của d là  x - 3 - 5 = y + 2 1 = z + 1 - 1

9 tháng 7 2017

Đáp án A

Ta có

Giả hệ với ẩn t; k và ku

26 tháng 2 2019

Chọn A.

6 tháng 10 2018

Đáp án C.

NV
16 tháng 5 2019

Câu 1:

Do \(MA=MB\Rightarrow M\) là trung điểm AB

Gọi \(B\left(a;0;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=6-a\\y_A=2y_M-y_B=4\\z_A=2z_M-z_B=2\end{matrix}\right.\)

\(A\in\left(Q\right)\)

\(\Rightarrow6-a+4+2-7=0\Rightarrow a=5\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(5;0;0\right)\\A\left(1;4;2\right)\end{matrix}\right.\) \(\Rightarrow AB=6\)

Câu 2:

Gọi (Q) là mặt phẳng chứa A và song song (P)\(\Rightarrow d\in\left(Q\right)\)

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-4\left(z-3\right)=0\)

\(\Leftrightarrow2x+y-4z+8=0\)

Giao điểm B của (Q) và trục Ox: \(2x+8=0\Rightarrow x=-4\) \(\Rightarrow B\left(-4;0;0\right)\)

\(\Rightarrow d\) nhận \(\overrightarrow{u_d}=\overrightarrow{BA}=\left(5;2;3\right)\) là một vtcp

Phương trình d: \(\left\{{}\begin{matrix}x=-4+5t\\y=2t\\z=3t\end{matrix}\right.\)

26 tháng 2 2019

2 tháng 5 2019

Chọn C

Gọi giao điểm của Δ và d là B nên ta có: B (3+t;3+3t;2t) 

Vì đường thẳng Δ song song với mặt phẳng (α) nên:

 

Phương trình đường thẳng Δ đi qua A và nhận