![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C
Gọi C là trung điểm của AB ⇒ C(0;1;-1) ⇒ phương trình đường thẳng qua C và song song với AB là: x 1 = y - 1 - 1 = z + 1 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C
Ta có là véc-tơ chỉ phương của đường thẳng AB.
Phương trình chính tắc của đường thẳng AB là
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn A.
∆ đi qua hai điểm A và B nên có vectơ chỉ phương A B → 2 ; 3 ; - 4
Vậy phương trình chính tắc của ∆ là x - 1 2 = y + 2 3 = z - 5 - 4
![](https://rs.olm.vn/images/avt/0.png?1311)
B C A D H K J S
Kẻ \(SH\perp AC\left(H\in AC\right)\)
Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)
\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)
\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)
Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)
Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)
Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)
Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp Án D
Pt đường thẳng d có vecto chỉ phương u ⇀ = n P ⇀ , n Q ⇀ = (1;0;-1)
Dt đi qua A (1;-2;3)
Chọn đáp án D
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C
Mặt phẳng cần tìm vuông góc với ∆ nên nhận vecto chỉ phương của ∆ là (3; -2; 1) làm vecto pháp tuyến.
Phương trình mặt phẳng cần tìm là: