K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

Đáp án A

Phương pháp giải:  Xác định tọa độ ba điểm A, B, C và gọi tâm I, sử dụng điều kiện cách đều IA=IB=IC=IO  để tìm tọa độ tâm I của mặt cầu

Lời giải:

Gọi A(a;0;0), B(0;b;0), C(0;0;c) => Tọa độ trọng tâm G là 

Gọi tâm mặt cầu (S) là I(x;y;z) => IO =IA = IB =IC

Vậy tọa độ tâm mặt cầu là I(3;6;12)

21 tháng 1 2018

28 tháng 2 2017

Đáp án B

Vì OA, OB, OC đôi một vuông góc và M là trực tâm  tam giác ABC => OM ⊥ (ABC)

Suy ra mp(ABC) nhận  O M →  làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)

Vậy phương trình  mp(P): 

<=> x +2y+3z -14=0  

20 tháng 9 2017

Chọn D

Vì A thuộc Ox nên A(a;0;0).

Vì B thuộc Oy nên B(0;b;0).

Vì C thuộc Oz nên C(0;0;c).

 

G là trọng tâm tam giác ABC khi và chỉ khi

27 tháng 11 2019

 Chọn B.

là giao điểm của mặt phẳng (α) các trục Ox, Oy, Oz

Phương trình mặt phẳng 

Ta có G là trọng tâm tam giác ABC

9 tháng 5 2018

Chọn C

28 tháng 3 2018

Chọn C

20 tháng 3 2017

Chọn A

Gọi A(a;0;0);B(0;b;0);C(0;0;c)

Phương trình mặt phẳng (P) có dạng:

Vì M là trực tâm của tam giác ABC nên:

Khi đó phương trình (P): 3x+2y+z-14=0.

Vậy mặt phẳng song song với (P) là: 3x+2y+z+14=0.

2 tháng 9 2018

  Đáp án C

14 tháng 10 2017

Chọn C

Gọi tọa độ điểm M(x;y;z)

là phương trình của mặt cầu (S), có tâm I (-1;-1;-4) và bán kính R = 3