Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt ba trục tọa độ lần lượt l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Đáp án B

Vậy d lớn nhất bằng  1 3  khi a = b = c = 1.

19 tháng 1 2019

 và tứ diện O.ABC vuông tại O nên:

 

Chọn đáp án B. Mẹo TN: Vì tính đối xứng cho 

 

Chọn đáp án B.

19 tháng 11 2019

Đáp án B

Phương pháp: (P) cách đều B, C ó d(B;(P)) = d(c;(P))

TH1: BC // (P)

TH2: I  ∈ (P), với I là trung điểm của BC

Cách giải:

Ta có: 

(P) cách đều B, C ó d(B;(P)) = d(c;(P))

TH1: BC // (P)

=> (P) đi qua O và nhận  là 1 VTPT

TH2:  (P) với I là trung điểm của BC

 

=> (P): 6x – 3y + 4z = 0

Dựa vào các đáp án ta chọn được đáp án B

1 tháng 11 2019

Chọn C.

3 tháng 2 2019

Đáp án A.

1. Tìm tọa độ tâm I ngoại tiếp tứ diện OABC

Gọi M là trung điểm của AB thì M a 2 ; b 2 ; 0 . Đường thẳng d là trục của  nên d đi qua M và nhận vecto chỉ phương  k → = 0 ; 0 ; 1

Phương trình tham số của đường thẳng d : x = a 2 y = b 2 z = t t ∈ ℝ .

 

Gọi N là trung điểm của OC thì N 0 ; 0 ; c 2 .

Mặt phẳng (P) là mặt phẳng trung trực của OC nên (P)   đi qua M và nhận vecto pháp tuyến là k → = 0 ; 0 ; 1 .

Phương trình tổng quát của mặt phẳng P : z = c 2 .

Khi đó tâm I của mặt cầu ngoại tiếp tứ diện OABC là giao điểm của đường thẳng d và mặt phẳng (P), tức I a 2 ; b 2 ; c 2 .

2. Tìm mặt phẳng (P)   là quỹ tích của tâm I và tính  d O ; P   .

Ta có   x I = a 2 ; y I = b 2 ; z I = c 2 ⇒ a = 2 x I b = 2 y I c = 2 z I

  a + 2 b + 2 c = 6 nên   2 x I + 2.2 y I + 2.2 z I = 6 ⇔ x I + 2 y I + 2 z I − 3 = 0

 

Vậy điểm I luôn nằm trên một mp cố định có pt là P : x + 2 y + 2 z − 3 = 0 .

Vậy  d O ; P = 0 + 2.0 + 2.0 − 3 1 2 + 2 2 + 2 2 = 1

27 tháng 10 2017

Đáp án D.

Gọi D, K lần lượt là trung điểm của AB, OC. Từ D kẻ đường  thẳng vuông góc với mặt phẳng (OAB). Và cắt mặt phẳng trung trực của OC tại I ⇒ I  là tâm mặt cầu ngoại tiếp tứ diện OABC suy ra z 1 = c 2 . 

Ta có S ∆ O A D = 1 2 . S ∆ O A B = 1 4 . a b = 1 2 . D E . O A ⇒ D E = b 2 . 

Tương tự D F = a 2 ⇒ x 1 = a 2 , y = b 2 ⇒ I a 2 ; b 2 ; c 2 . 

Suy ra x 1 + y 1 + z 1 = a + b + c 2 = 1 ⇒ I ∈ P : x + y + z - 1 = 0 . 

Vậy khoảng cách từ điểm M dến (P) bằng d = 2015 3 .

5 tháng 2 2017

Do M(2;0;0), B(0;b;0), C(0;0;c) thuộc (P) nên 

Chọn A.

17 tháng 3 2018

2 tháng 6 2018