K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

Chọn A.

Ta có A(2;3;3); B(2;2;2)

Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương  A B → = 0 ; - 1 ; 1

Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t

18 tháng 6 2019

Chọn A.

Gọi ∆ là đường thẳng cần tìm

Đường thẳng d có vecto chỉ phương  a d → = 0 ; 1 ; 1

Ta có A(2;3;3); B(2;2;2)

∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương 

Vậy phương trình của ∆ là

3 tháng 9 2023

Để tính cos(Δ1;Δ2), ta cần tìm vector chỉ phương của hai đường thẳng Δ1 và Δ2.

Vector chỉ phương của đường thẳng d là (1, t, 2) và vector chỉ phương của đường thẳng d' là (-1, 1, -2).

Để tìm vector chỉ phương của mặt phẳng (P), ta lấy vector pháp tuyến của mặt phẳng. Ta có vector pháp tuyến của mặt phẳng (P) là (1, 1, -1).

Để hai đường thẳng Δ1 và Δ2 song song với mặt phẳng (P), ta có điều kiện là vector chỉ phương của Δ1 và Δ2 cũng phải song song với vector pháp tuyến của mặt phẳng (P). Vì vậy, ta cần tìm vector chỉ phương của Δ1 và Δ2 sao cho chúng song song với vector (1, 1, -1).

Ta có thể tìm vector chỉ phương của Δ1 và Δ2 bằng cách lấy tích vector của vector chỉ phương của d hoặc d' với vector pháp tuyến của mặt phẳng (P).

Tính tích vector của (1, t, 2) và (1, 1, -1): (1, t, 2) x (1, 1, -1) = (t-3, 3t+1, -t-1)

Tính tích vector của (-1, 1, -2) và (1, 1, -1): (-1, 1, -2) x (1, 1, -1) = (-1, -3, -2)

Hai vector trên là vector chỉ phương của Δ1 và Δ2. Để tính cos(Δ1;Δ2), ta sử dụng công thức:

cos(Δ1;Δ2) = (Δ1.Δ2) / (|Δ1|.|Δ2|)

Trong đó, Δ1.Δ2 là tích vô hướng của hai vector chỉ phương, |Δ1| và |Δ2| là độ dài của hai vector chỉ phương.

Tính tích vô hướng Δ1.Δ2: (t-3)(-1) + (3t+1)(-3) + (-t-1)(-2) = -t-3

Tính độ dài của Δ1: |Δ1| = √[(t-3)² + (3t+1)² + (-t-1)²] = √[11t² + 2t + 11]

Tính độ dài của Δ2: |Δ2| = √[(-1)² + (-3)² + (-2)²] = √[14]

Vậy, cos(Δ1;Δ2) = (-t-3) / (√[11t² + 2t + 11] * √[14])

Để tính giá trị của cos(Δ1;Δ2), ta cần biết giá trị của t. Tuy nhiên, trong câu hỏi không cung cấp giá trị cụ thể của t nên không thể tính được giá trị chính xác của cos(Δ1;Δ2).

5 tháng 5 2018

Chọn C.

*) Gọi A = d1 ∩ (α)

A ∈ d1 ⇒ A(2-a;1+3a;1+2a)

Mà điểm A thuộc mp(α) nên thay tọa độ điểm A vào phương trình mặt phẳng ta được

(2 - a) + 2(1 + 3a) – 3(1 + 2a) – 2= 0

2 – a + 2 + 6a – 3 – 6a – 2 = 0

⇒ a = -1 ⇒ A(3;-2;-1)

*) Gọi B = d2 ∩ (α)

B ∈ d2 ⇒ B(1-3b;-2+b;-1-b)

Mà điểm B thuộc mp(α) nên thay tọa độ điểm B vào phương trình mặt phẳng ta được:

(1 - 3b) + 2(-2 + b) - 3(-1 - b) - 2 = 0

1- 3b – 4 + 2b + 3 + 3b - 2 = 0

⇔ 2b - 2 = 0 ⇔ b = 1 ⇒ B(-2;-1;-2)

*) Đường thẳng d đi qua điểm A(3;-2;-1) và có vectơ chỉ phương  

Vậy phương trình chính tắc của d là  x - 3 - 5 = y + 2 1 = z + 1 - 1

3 tháng 9 2017

Đáp án B

Cách giải

4 tháng 6 2019

Đáp án C

Gọi C là trung điểm của AB ⇒ C(0;1;-1) ⇒ phương trình đường thẳng qua C và song song với AB là:  x 1 = y - 1 - 1 = z + 1 2

30 tháng 6 2017

Chọn B

Gọi (P) là mặt phẳng chứa hai đường thẳng d₁ và d₂

Khi đó (P) đi qua M (0;-1;0) và có cặp véctơ chỉ phương 

Gọi  là VTPT của (P). Khi đó 

Phương trình (P): -8x+3y+2z+3=0

Gọi H là giao điểm của đường thẳng d₂ và (P):

Đường thẳng d đi qua H và có VTCP   có phương trình:

NV
14 tháng 4 2022

Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)

Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:

\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)

\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)

\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)

26 tháng 10 2019