Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp Án A
Gọi M là trung điểm của AB ⇒ M(1;1;2)
Vecto pháp tuyến là A B ⇀ (-6;2;2) ⇒ n ⇀ (-3;1;1)
Phương trình đường thẳng cần tìm có dạng:
-3(x-1)+1(y-1)+1(z-2)=0
⇒ 3x-y-z=0
Giải:
Cách 1 : Mặt phẳng trung trực (P) của đoạn thẳng AB chính là đoanh thẳng qua trung điểm I của AB và vuông góc với vectơ
Ta có (2 ; -2; -4) và I(3 ; 2 ; 5) nên phương trình mặ phẳng (P) là:
2(x - 3) - 2(y - 2) - 4(z - 5) = 0 hay x- -2y -2z + 9 = 0.
Cách 2: Mặt phẳng trung trực (P) của đoạn thẳng AB là tập hợp điểm M(x ; y ; z) trong không gian sao cho:
MA = MB ⇔ MA2 = MB2
⇔ (x – 2)2 + (y – 3)2 + (z – 7)2 = (x – 4)2 + (y – 1)2 + (z – 3)2
⇔ - 4x + 4 - 6y + 9 - 14z + 49 = - 8x + 16 - 2y + 1 - 6z +9
⇔ 4x - 4y - 8z + 36 = 0
⇔ x - y - 2z + 9 = 0.
Đáp án B
Ta có:
trung điểm của AB là (-2;-1;1)
Mặt phẳng trung trực của AB qua điểm (-2;-1;1) và có VTPT là
Suy ra
Hay 3x -2 y -z- 5 =0
Đáp án B
1 2 A B → =(1;2;-1) là vectơ pháp tuyến của mặt phẳng trung trực của AB. I(2;1;0) là trung điểm của AB, khi đó phương trình mặt phẳng trung trực của đoạn AB là x-2+2(y-1)-z=0
<=> x+2y-z-4=0
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
a. Từ giả thiết ta có \(\overrightarrow{AB}=\left(1;-6;-5\right)\) và \(\overrightarrow{CA}=\left(1;2;1\right)\)
Suy ra :
\(\left|\overrightarrow{AB;}\overrightarrow{CA}\right|=\left(\left|\begin{matrix}-6&-5\\2&1\end{matrix}\right|;\left|\begin{matrix}-5&1\\1&1\end{matrix}\right|;\left|\begin{matrix}1&-6\\1&2\end{matrix}\right|\right)\)
Từ đó do \(\left[\overrightarrow{AB;}\overrightarrow{CA}\right]\ne\overrightarrow{0}\) nên A, B, C không thẳng hàng và mặt phẳng (P) đi qua A,B,C có vecto pháp tuyến \(\overrightarrow{n}=\frac{1}{2}\left[\overrightarrow{AB;}\overrightarrow{CA}\right]=\left(2;-3;4\right)\)
Suy ra (P) có phương trình:
\(2\left(x-3\right)-3\left(y-3\right)+4\left(z-2\right)=0\)
hay :
\(2x-3y+4z-5=0\)
b. Do \(OD=\sqrt{1^2+2^2+1^2}=\sqrt{6}\) nên \(S_{\Delta ODE}\) bé nhất khi và chỉ khi \(d\left(E;OD\right)\) bé nhất.
(P) F E O X D
\(\overrightarrow{OD}.\overrightarrow{n}=1.2.\left(-3\right)+1.4\) và\(1.2+2\left(-3+1.4-5\ne0\right)\) nên \(OD\backslash\backslash\left(P\right)\). Bởi vậy tập hợp tất cả những điểm \(E\in\left(P\right)\) sao cho \(d\left(E;OD\right)\) bé nhất là OD trên mặt phẳng (P)
Gọi d là đường thẳng đi qua O và vuông góc với (P). Khi đó d có phương trình :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\)
Gọi M là hình chiếu của O(0;0;0) trên (P). Khi đó tọa độ của M thỏa mãn hệ phương trình :
\(\begin{cases}\frac{x}{2}=\frac{y}{-3}=\frac{z}{4}\\2x-3y+4z-5=0\end{cases}\)
Giải hệ ta được : \(M\left(\frac{10}{29};\frac{-15}{29};\frac{20}{29}\right)\)
Vậy tập hợp tất cả các điểm E cần tìm là đường thẳng đi qua M, song song với OD, do đó có phương trình dạng tham số :
\(\begin{cases}x=\frac{10}{29}+t\\y=-\frac{15}{29}+2t\\z=\frac{20}{29}+t\end{cases}\) \(\left(t\in R\right)\)
\(\overrightarrow{AB}=\left(-6;2;2\right)=-2\left(3;-1;-1\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(1;1;2\right)\)
Phương trình trung trực AB:
\(3\left(x-1\right)-1\left(y-1\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x-y-z=0\)