Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Gọi I là trung điểm của AB
Suy ra: MA2 + MB2 đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
=>M là hình chiếu của I trên trục Oz => M (0 ; 0 ; 3)
Chọn C
Gọi I là trung điểm của
Ta có:
IA²+IB² không đổi nên MA²+MB² đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
=> M là hình chiếu của I trên trục Oz.
=> M (0;0;3).
Chọn A
Gọi I, O lần lượt là trung điểm của AB và IC, khi đó với điểm M bất kỳ ta luôn có
nên d nhỏ nhất khi và chỉ khi nên M là hình chiếu vuông góc của O lên (P). Có A(0; -2; -1), B (-2,-4,3) => I (-1 ; -3 ; 1), kết hợp với C (1; 3; -1) ta có O (0;0;0)
Đường thẳng qua O (0;0;0) vuông góc với (P) có phương trình
Giao điểm của d và (P) chính là hình chiếu vuông góc M của O (0;0;0) lên mặt phẳng (P).
Chọn C
IA²+IB² không đổi nên MA²+MB² đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
Suy ra M là hình chiếu của I trên trục Oz.
Suy ra M (0;0;3).
Chọn B
Ta có A, B cùng nằm về một phía của (P). Gọi A' đối xứng với A qua (P) suy ra A' (-2; 2; 1). Ta có MA + MB = MA' + MB ≥ BA'. Dấu bằng xảy ra khi M là giao điểm của BA' và (P). Xác định được . Suy ra Chọn B
Quỹ tích d là hình trụ dài vô tận có trục là Oz và bán kính \(R=3\)
Khoảng cách từ A đến d là lớn nhất khi d đi qua giao điểm của đường thẳng d' và trụ, trong đó d' qua A, cắt đồng thời vuông góc Oz
\(\Rightarrow\) A đúng
Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)
\(T=MA^2+MB^2+MC^2\)
\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(T=3MG^2+GA^2+GB^2+GC^2\)
Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)
\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)
Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)
M là giao điểm (d) và (P) nên thỏa mãn:
\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)