![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án D.
Phương pháp giải: Dựng hình, áp dụng công thức trung tuyến để biện luận giá trị lớn nhất
Lời giải:
Xét mặt cầu ( S ) : x - 1 2 + y - 2 2 + z - 2 2 = 9 có tâm I(1;2;2) và bán kính R= 3
=> M, N nằm bên ngoài khối cầu (S).
Gọi H là trung điểm của MN
Lại có
Khi và chỉ khi E là giao điểm của IH và mặt cầu (S).
Gọi (P) là mặt phẳng tiếp diện của (S) tại E
Dựa vào các đáp án ta thấy ở đáp án D,
Vậy phương trình mặt phẳng cần tìm là 2x-2y+z+9=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B.
Phương pháp: Tính độ dài đoạn thẳng IM với I là tâm mặt cầu.
Tham số hóa tọa độ điểm M, sau đó dựa vào độ dài IM để tìm điểm M.
Cách giải :
Mặt cầu (S) có tâm I(1;2;-3) bán kính R = 3 3
Đặt MA=MB+MC=a. Tam giác MAB đều => AB =a
Tam giác MBC vuông tại M => BC= a 2
Tam giác MCA có
Xét tam giác ABC có
=> Tam giác ABC ngoại tiếp đường tròn nhỏ có đường kính AC
Xét tam giác vuông IAM có:
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn B
Mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 có tâm I (1;2;3), bán kính R=3.
IA = √6 < R nên A nằm trong mặt cầu.
Gọi r là bán kính đường tròn thiết diện, ta có
Trong đó h là khoảng cách từ I đến (P).
Diện tích thiết diện là
Vậy diện tích hình tròn (C) đạt nhỏ nhất khi h = IA. Khi đó là véc tơ pháp tuyến của (P).
Phương trình mặt phẳng (P) là 1 (x-0)+2 (y-0)+ (z-2)=0 ó x + 2y + z – 2 = 0