K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

6 tháng 5 2020

à xl bạn ngheennn

\n\n

\n
NV
6 tháng 5 2020

Câu 28:

\(\overrightarrow{CB}=\left(1;-1;1\right)\)

Do (P) vuông góc BC nên nhận (1;-1;1) là 1 vtpt

Phương trình (P):

\(1\left(x-1\right)-1\left(y-1\right)+1\left(z+5\right)=0\)

\(\Leftrightarrow x-y+z+5=0\)

Câu 29:

Mạt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên nhận các vecto có dạng \(\left(k;-2k;3k\right)\) cũng là các vtpt với \(k\ne0\)

Do đó đáp án B đúng (ko tồn tại k thỏa mãn)

Với đáp án A thì \(k=-2\) , đáp án C thì \(k=3\), đáp án D có \(k=1\)

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b 2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là 3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng?? 4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là 5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với...
Đọc tiếp

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b

2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là

3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng??

4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là

5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với gia tốc a(t)=\(1+\frac{t}{3}\)

(m/s^2). tính quãng đường ô tô đi được sau 6 giay kể từ khi ô tô bắt đầu tăng tốc

6 cho số phức z thỏa /z-1/=/(1+i)z/ . Tập hợp biểu diễn số phức z là một đường tròn có tâm và bán kính lần lượt là

7 trong mặt phẳng oxy, cho các điểm A(4;0),B(1;-1).Gọi G là trọng tâm của tam giác ABC .Biết rằng G là điểm biểu diễn số phức z mệnh đề nào dưới đây đúng

A z=\(3+\frac{3}{2}i\) B z=2-i C z=2+i D z=\(3-\frac{3}{2}i\)

8 viết pt mặt cầu S có tâm I(1;-2;5) và tiếp xúc với mp P:x-2y-2z-4=0

9 trong ko gian oxyz, viết pt mặt cầu qua bốn điểm O, A(1;0;0);,B(0;-2;0) ,C(0;0;4)

10 trong ko gian oxyz, cho hai điểm A(1;2;-1) vÀ B(-3;0;-1) . mặt phẳng trung trực của đoạn thằng AB có phương trình là

11 rong ko gian oxyz, đường thẳng d\(\left\{{}\begin{matrix}x=t\\y=1-t\\z=2+t\end{matrix}\right.\) đi qua điểm nào sau đây

A F(0;1;2) B K(1;-1;1) C E(1;1;2) D H(1;2;0)

12 trong ko gian oxyz, cho đường thẳng \(\Delta\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=13-t\end{matrix}\right.\) (t\(\in\)R) . Đường thảng d đi qua A(0;1;-1) cắt và vuông góc với đường thẳng \(\Delta\) .viết phương trình của đường thẳng d

13 trong ko gian oxyz cho điểm A(0;1;-2) . Tọa độ điểm H là hình chiếu vuông góc cũa điểm A trên mp (P):-x-2y+2z-3=0 là

14 trong ko gian với hệ tọa độ oxyz, cho điểm A(2;3;-1) và đường thẳng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\) tọa độ điểm \(A^'\) (A phẩy ) là điểm đối xứng của điểm A qua đường thẳng d là

15 trong ko gian oxyz cho điểm A(4;-3;2).tỌA độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d \(\frac{x+2}{3}=\frac{y+2}{2}\frac{z}{-1}\)

5
NV
23 tháng 5 2020

14.

Pt mp (P) qua A và vuông góc d:

\(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\) \(\Rightarrow M\left(2;5;1\right)\)

A' đối xứng A qua d \(\Rightarrow\)M là trung điểm AA'

Theo công thức trung điểm \(\Rightarrow A'\left(2;7;3\right)\)

15.

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

PT (P) qua A và vuông góc d:

\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x+2y-z-4=0\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)

\(\Rightarrow H\left(1;0;-1\right)\)

NV
23 tháng 5 2020

11.

Thay tọa độ 4 điểm vào pt d chỉ có đáp án A thỏa mãn

12.

Phương trình (P) qua A và vuông góc \(\Delta\):

\(1\left(x-0\right)+1\left(y-1\right)-1\left(z+1\right)=0\Leftrightarrow x+y-z-2=0\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(1+t+2+t-\left(13-t\right)-2=0\Rightarrow t=4\) \(\Rightarrow M\left(5;6;9\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(5;5;10\right)=5\left(1;1;2\right)\)

Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=-1+2t\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=5+t\\y=6+t\\z=9+2t\end{matrix}\right.\)

13.

Pt tham số đường d qua A vuông góc (P): \(\left\{{}\begin{matrix}x=-t\\y=1-2t\\z=-2+2t\end{matrix}\right.\)

H là giao điểm (P) và d nên tọa độ thỏa mãn:

\(t-2\left(1-2t\right)+2\left(-2+2t\right)-3=0\Rightarrow t=1\)

\(\Rightarrow H\left(-1;-1;0\right)\)

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\) là 2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6 3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz) 4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\)...
Đọc tiếp

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\)

2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6

3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz)

4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) :2x+2y-z+9=0 điểm A(1;2;-3). diểm đối xứng của a qua mặt phẳng \(\alpha\)

5 khẳng định nào sau đây là sai?

A\(\int\) \(f^,\)(x)dx=F(x)+C B \(\int\) k.f(x)dx=k.\(\int\) f(x)dx C \(\int\)f(x)dx=F(x)+C D\(\int\)[f(x)-g(x)]dx=\(\int\)f(x)dx-\(\int\)g(x)dx

6 gọi z1,z2,z3,z4 là bốn nghiệm của pt z^4-4z^3+7z^2-16z+12=0. tính z1^2+z2^2+z3^2+z4^2

7 trong khong gian oxyz, cho mặ phẳng (p):x+3y-z+9=0 và đương thẳng d có phương trình\(\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{-3}\) . tìm tọa độ giao điểm I của mp (P) va đường thẳng d

8 tính tích phân I=\(\int_{\frac{1}{e}}^e\) \(\frac{dx}{x}\)

9 trong không gian với hệ trục tọa độ oxyz, cho điểm A(1;-1-2) và đương thẳng d \(\frac{x-1}{1}=\frac{y+1}{1}=\frac{z}{2}\) . Phương trình mặt phẳng (P) qua điểm A và chứa đường thẳng d là

10 tính thể tích khối tròn xoay khi quay hình phẳng (D) :y=x^2-dx+4,y=0,x=0 qanh trục ox

11 cho F(x)=x^2 là một nguyên hàm của hàm số f(x)e^2x. tìm nguyên hàm của hàm số f phẩy(x)e^2x

12 diện tích hình phẳng giới hạn bởi các đồ thị ham số y=(e+1)x và y=(1+e^x) là

13 trong không gian với hệ tọa độ (oxyz) cho A(1;2;-3) hính chiếu vuông góc của điểm A trên trục ox là

14 trong không gian với hệ trưc tọa độ oxyz, cho mp(P):2x+y-2z-1=0 và đường thẳng d:\(\frac{x-2}{1}=\frac{y}{-2}=\frac{z+3}{3}\) . pt mp chứa d và vuông góc với(P) là

15 diện tích hình phẳng giới hạn bởi hai đường thẳng x+0,x=\(\pi\) và đô thị của hai hàm số y=cosx,y=sinx là

6
NV
12 tháng 5 2020

14.

Mặt phẳng (P) nhận \(\overrightarrow{n}=\left(2;1;-2\right)\) là 1 vtpt

Đường thẳng d nhận \(\overrightarrow{u}=\left(1;-2;3\right)\) là 1 vtcp

Điểm \(M\left(2;0;-3\right)\) thuộc d nên cũng thuộc (Q)

(Q) vuông góc (P) và chứa d nên nhận \(\left[\overrightarrow{n};\overrightarrow{u}\right]=\left(1;8;5\right)\) là 1 vtpt

Phương trình (Q):

\(1\left(x-2\right)+8y+5\left(z+3\right)=0\)

\(\Leftrightarrow x+8y+5z+13=0\)

15.

Phương trình hoành độ giao điểm:

\(sinx=cosx\Rightarrow x=\frac{\pi}{4}\)

\(S=\int\limits^{\frac{\pi}{4}}_0\left(cosx-sinx\right)dx+\int\limits^{\pi}_{\frac{\pi}{4}}\left(sinx-cosx\right)dx=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

NV
12 tháng 5 2020

10.

Coi lại đề nào bạn, pt hình phẳng (D) có vấn đề, nhìn chữ -dx+4 kia ko biết phải nghĩ sao

11.

Cũng ko dịch được đề này, đoán đại: cho \(F\left(x\right)=x^2\) là 1 nguyên hàm của \(f\left(x\right).e^{2x}\). Tìm nguyên hàm của \(f'\left(x\right).e^{2x}\)

\(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=e^{2x}f\left(x\right)-2\int f\left(x\right)e^{2x}dx=e^{2x}f\left(x\right)-2x^2+C\)

12.

Đúng là \(y=\left(e+1\right)x\)\(y=1+e^x\) chứ bạn? Hai đồ thị này cắt nhau tại 2 điểm, nhưng ko thể tìm được tọa độ của điểm thứ 2 đâu

13.

Hình chiếu của A lên Ox có tọa độ \(\left(1;0;0\right)\)

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là 2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la 3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\) là 4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng 5 trong ko gian hệ tọa độ oxyz, cho...
Đọc tiếp

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là

2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la

3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\)

4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng

5 trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng

6 trong ko gian với tọa độ oxyz. cho 2 điểm A(-3;1;-4 va B(1;-1;2). pt mặt cầu S nhận AB làm đường kính là

7 trong ko gian vói hệ tọa độ oxyz, viết pt mặt cầu tâm I(3;2;4) và tiếp xúc với trục oy là

8 pt mặt cầu S tâm I(1;3;5) và tiếp cú với đường thẳng \(\frac{x}{1}=\frac{y+1}{-1}=\frac{z-2}{-1}\)

9 trong không gian với hệ tọa độ oxyz , cho điểm I(-1;0;0) và đường thẳng d:\(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+t\end{matrix}\right.\) pt mặt cầu S có tâm I và tiếp xúc với đường thẳng d là

10 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(1;2;2),B(3;-2-0). viết pt mặt phẳng trung trực đoạn AB

11 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(4;0;1) và B(-2;2;3). pt mặt phẳng trung trực đoạn AB là

12 trong ko gian oxyz, mặt phẳng \(\alpha\) đi qua gốc tọa độ(0;0;0) va2 co1 vecto phap tuyen n=(6;3;-2) thi co pt ?

13 trong ko gian oxyz , cho 2 điểm A(1;-2;4) B(2;1;2). viết pt mặt phẳng (P) vuông góc với đường AB tại điểm A LÀ

14 Trong ko gian với hệ tọa độ oxyz ,mp qua A(2;3;1) và B(0;1;2).pt mặt phẳng (P) đi qua A và vuông góc AB là

15 trong ko gian hệ tọa độ oxyz, ,p đi qua điểm A (2;-3;-2) và có vecto pháp tuyến \(\overline{n}\)=(2;-5;1) có pt là

16 viết pt mặt phẳng (P) qua A (1;1;1) vuông góc với hai mp \(\alpha\) :x+y-z-2=0 \(\beta\) x-y+z-1=0

17 trong ko gian với hệ tọa độ oxyz cho hai mp(p):x-y+z=0,(Q):3x+2y-12z+5=0 , viết pt mặt phẳng (R) đi qua O và vuông góc với (P),(Q)

18 trong ko gian hệ tạo độ oxyz, mp(Q) đi qua 3 điểm ko thẳng hang M(2;2;0),N(2;0;3),P(0;3;3) có pt là

19 trong ko gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) cắt 3 trục tọa M (3;0;0),N(0;-4;0) ,P(0;0;-2). pt mặt phẳng \(\alpha\)?

20 rong ko gian với hệ tọa độ oxyz , cho ba điểm A(1;0;0),B(0;2;0)C(0;0;3). HỎI MẶT MẶT PHẲNG NÀO DƯỚI ĐÂY ĐI QUA BA ĐIỂM A,B VÀ C

A (q) X/3+Y/2+Z/3=1 B (S)X+2Y+3Z=-1

C (P) X/1+Y/2+Z/3=0 D (r):X+2Y+3Z=1

7
NV
16 tháng 5 2020

19.

Phương trình mặt phẳng theo đoạn chắn:

\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)

\(\Leftrightarrow4x-3y-6z-12=0\)

20.

Phương trình mặt phẳng (ABC) theo đoạn chắn:

\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)

\(\Leftrightarrow6x+3y+2z-6=0\)

Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)

NV
16 tháng 5 2020

15.

\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)

16.

\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)

Phương trình (P):

\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)

17.

\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)

\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)

Phương trình mặt phẳng (R):

\(2x+3y+z=0\)

18.

\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)

\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)

Phương trình:

\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)

\(\Leftrightarrow9x+6y+4z-30=0\)

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1] 2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ 3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng 4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là 5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao...
Đọc tiếp

1 biết \(\int_3^7\) f(x)dx=4 . Tính E=\(\int_3^7\) [f(x)+1]

2 tính diện tích S của hình phẳng giới hạn bởi các đường y =\(\frac{2x-1}{-x+1}\) và hai trục tọa độ

3 phuog trình \(z^2+az+b=0,\left(a,b\in R\right)\) có một nghiệm là z=-2+i.Gía trị a - b bằng

4 trong không gian hệ tọa độ oxyz, phương trình mặt phẳng qua M (1;1;1) song song (oxy) là

5 trong không gian oxyz, cho mp (P) 2x+y-z-1=0 và (Q) x-2y+z-5=0 . Khi đó, giao tuyến của (P) và (Q) có một vecto chỉ phương là

A \(\overline{u}\) (1;-2;1) B \(\overline{u}\) (1;3;5) C \(\overline{u}\) (2;1-1) D \(\overline{u}\) (-1;3;-5)

6 trong ko gian oxyz cho điểm A(0;1;-2) .Tọa độ điểm H là hình chiếu vuông góc của điểm A trên mặt phẳng (P) :-x-2y+2z-3=0 là

7 trong ko gain oxyz cho điểm A(1;0;2).Tọa độ điểm H là hình chiều vuông góc của điểm A trên đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z+3}{3}\)

8 trong ko gian oxyz , mặt phẳng nào sau đây nhận vecto \(\overline{n}\) =(1;2;3) làm vecto pháp tuyến

A 2z-4z+6=0 B x+2y-3z-1=0 C x-2y+3z+1=0 D 2x+4y+6z+1=0

9 Trong ko gian oxyz , cho ba điểm A(2;1;-1),B(-1;0;4),C(0;-2;-1) .Phương trình nào sau đây là phương trình của mặt phẳng A và vuông góc BC

A :x-2y-5z+5=0 B x-2y-5z-5=0 C x-2y-5z=0 D 2x-y+5z-5=0

10 trong không gian oxyz , cho hai điểm A(4;1;0) ,B(2;-1;2).Trong các vecto sau , một vecto chỉ phương của đường thẳng AB là

A \(\overline{U}\) (3;0;-1) B \(\overline{u}\) (1;1;-1) C \(\overline{u}\) (2;2;0) D \(\overline{u}\) (6;0;2)

11 Trong ko gian oxyz, viết pt tham số của đường thẳng đi qua hai điểm A(1;2;-3) ,B(2;-3;1)

12 Trong ko gian oxyz, cho điểm A(-2;0;3) và mp (p) -2X+Y-Z+11=0.Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

13 trong ko gian vói hệ tọa độ oxyz, cho điểm A(1;0;2).TỌA độ điểm \(A^'\) (A phẩy) là điểm đối xúng của điểm A qua đường thẳng d :\(\frac{x-1}{2}=\frac{y+1}{-1}\frac{z+3}{3}\)

0

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4 2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là 3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là 4 trong không gian với hệ...
Đọc tiếp

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4

2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là

3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là

4 trong không gian với hệ tạo độ oxyz, cho điểm M(2;3;-1) và đường thảng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\). tọa độ hình chiếu vuong góc của M trên( d)là

5 trong không gian oxyz, cho mp(p) 2x+3y+z-11=0. mặt cầu(S) có tâm I (1;-2;1) cà tiếp xúc zới (p) tại H . tọa độ điểm H là

6 pt mặt cầu có tâm I(1;2;3) và tiếp xúc với mp (oxz) là

7 trong khong gian với hệ dợ độ oxyz, mp(Q) có p x-2y+3z-1=0 trong các vecto sau, vecto nào ko phải là một vecto pháp tuyến của mp(Q)

A \(\overline{n}\)(3;-6;9) B (-2;4;-6) C(1;-4;9) D(1;-2-3)

3
NV
12 tháng 5 2020

6.

Mặt phẳng Oxz có pt: \(y=0\)

Khoảng cách từ I đến Oxz: \(d\left(I;Oxz\right)=\left|y_I\right|=2\)

\(\Rightarrow R=2\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=4\)

7.

Mặt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên cũng nhận các vecto có dạng \(\left(k;-2k;3k\right)\) là vtpt

Bạn có ghi nhầm đề bài ko nhỉ? Thế này thì cả C và D đều ko phải vecto pháp tuyến của (Q)

NV
12 tháng 5 2020

4.

Đường thẳng d nhận \(\left(1;-2;2\right)\) là 1 vtcp

Gọi (P) là mặt phẳng qua M và vuông góc d \(\Rightarrow\) (P) nhận \(\left(1;-2;2\right)\) là 1 vtpt

Phương trình (P): \(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Tọa độ hình chiếu M' của M lên d là giao của d và (P) nên thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\)

\(\Rightarrow M'\left(2;5;1\right)\)

5.

(P) nhận \(\left(2;3;1\right)\) là 1 vtpt

Gọi d là đường thẳng qua I và vuông góc (P)

\(\Rightarrow\) d nhận \(\left(2;3;1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=-2+3t\\z=1+t\end{matrix}\right.\)

H là giao điểm của d và (P) nên tọa độ thỏa mãn:

\(2\left(1+2t\right)+3\left(-2+3t\right)+1+t-11=0\) \(\Rightarrow t=1\)

\(\Rightarrow H\left(3;1;2\right)\)