K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2020

Gọi \(I\left(x;y;z\right)\) là điểm thỏa mãn \(\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=0\)

\(\left\{{}\begin{matrix}\overrightarrow{IA}=\left(1-x;-2-y;1-z\right)\\\overrightarrow{IB}=\left(-x;2-y;-1-z\right)\\\overrightarrow{IC}=\left(2-x;-3-y;1-z\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3-x=0\\-7-y=0\\3-z=0\end{matrix}\right.\) \(\Rightarrow I\left(3;-7;3\right)\)

\(MA^2-MB^2+MC^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2-\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\)

\(=MI^2+IA^2+IB^2+IC^2\ge IA^2+IB^2+IC^2\)

Dấu "=" xảy ra khi M trùng I hay \(M\left(3;-7;3\right)\)

\(\Rightarrow P=134\)

28 tháng 7 2019

Đáp án D.

Gọi G là trọng tâm của tam giác ABC, ta có G(2;1;0) 

Ta có:

Từ hệ thức trên ta suy ra: M A 2 + M B 2 + M C 2  đạt GTNN

MG đạt GTNN M là hình chiếu vuông góc của G trên (P)

Gọi (d) là đường thẳng qua G và vuông góc với (P) thì (d) có phương trình tham số là 

 

Tọa độ điểm M là nghiệm của hệ phương trình:

 

 

3 tháng 9 2018

Đáp án B.

25 tháng 8 2018

Chọn A

Gọi  là trọng tâm tam giác ABC. Suy ra: G(2;-2;2)

Do tổng GAGBGC2 không đổi nên MAMBMC2 đạt giá trị nhỏ nhất khi và chỉ khi GM2 nhỏ nhất

Mà S nằm trên mặt phẳng (Oyz) nên M là hình chiếu vuông góc của G lên mặt phẳng (Oyz). Suy ra: M(0;-2;2)

Vậy P = x+y+z = 0 + (-2) + 2 = 0

20 tháng 12 2017

Chọn A

Gọi G là trọng tâm tam giác ABC. Ta có G (0; 0; 3) và G ∉ (S)

Khi đó: 

Ta lại có, mặt cầu (S) có bán kính R = 1 tâm I (0;0;1) thuộc trục Oz, và (S) qua O.

Mà G  Oz nên MG ngắn nhất khi M = Oz  (S). Do đó M (0;0;2). Vậy MA = √2

6 tháng 3 2018

14 tháng 1 2018

Chọn A

Phương pháp: 

+) Xác định điểm I thỏa mãn   I A → + I B → - I C → = 0 →

 

+) Khi đó 

 nhỏ nhất khi và chỉ khi MI ngắn nhất  M là hình chiếu vuông góc của I lên (Oxy) .

Cách giải:

27 tháng 1 2017

Đáp án D

Ta có:  

 

Gọi I là điểm thỏa mãn  

Suy ra 

4 tháng 7 2017

Đáp án B

Gọi M(a;b;c) suy ra 

Khi đó  M A 2 + 2 M B 2  

 

10 tháng 2 2018

Đáp án A

Phương pháp giải:

Vì điểm M thuộc d nên tham số hóa tọa độ điểm M, tính tổng  M A 2 + M B 2  đưa về khảo sát hàm số để tìm giá trị nhỏ nhất

Lời giải:

Khi đó T =  M A 2 + M B 2

Dễ thấy

Dấu bằng xảy ra khi và chỉ khi t =1 => M(2;0;5)

25 tháng 5 2017

Đáp án D.