Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\overrightarrow{AB}=\left(1;-3;-3\right);\overrightarrow{AC}=\left(-1;-1;-4\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(9;7;-4\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=\frac{1}{2}\sqrt{9^2+7^2+4^2}=\frac{\sqrt{146}}{2}\)
2.
Phương trình mặt phẳng (P) qua A và vuông góc d là:
\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x+2y-z-4=0\)
Tọa độ H là nghiệm: \(\left\{{}\begin{matrix}\frac{x+2}{3}=\frac{y+2}{2}=\frac{z}{-1}\\3x+2y-z-4=0\end{matrix}\right.\) \(\Rightarrow H\left(1;0;-1\right)\)
3.
\(f\left(x\right)=6x^5-9x^6\)
\(\Rightarrow F\left(x\right)=\int\left(6x^5-9x^6\right)dx=x^6-\frac{9}{7}x^7+C\)
\(F\left(-1\right)=1\Leftrightarrow1+\frac{9}{7}+C=1\Rightarrow C=-\frac{9}{7}\)
\(\Rightarrow F\left(x\right)=-\frac{9}{7}x^7+x^6-\frac{9}{7}\)
câu 5 ấy chắc thầy tui buồn ngủ nên quánh lộn chữ sai thành đúng r
12.
\(R=d\left(I;Oxz\right)=\left|y_I\right|=3\)
Phương trình:
\(x^2+\left(y+3\right)^2+z^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+6y=0\)
13.
\(R=d\left(M;\alpha\right)=\frac{\left|1-1+2.2-3\right|}{\sqrt{1^2+1^2+2^2}}=\frac{1}{\sqrt{6}}\)
Pt mặt cầu:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=\frac{1}{6}\)
14.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)
Phương trình:
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2=9\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y-2z-3=0\)
a) \(\left(\sqrt{17}\right)^6=\sqrt{\left(17^3\right)^2}=17^3=4913\)
\(\left(\sqrt[3]{28}\right)^6=\sqrt[3]{\left(28^2\right)^3}=28^2=784\)
=> \(\left(\sqrt{17}\right)^6>\left(\sqrt[3]{28}\right)^6\)
=> \(\sqrt{17}>\sqrt[3]{28}\)
b) \(\left(\sqrt[4]{13}\right)^{20}=13^5=371293\)
\(\left(\sqrt[5]{23}\right)^{20}=23^4=279841\)
=> \(\sqrt[4]{13}>\sqrt[5]{23}\)
Lời giải:
Ta có: \(y'=x^4-3x^2+2=0\Leftrightarrow \left[\begin{matrix} x=\pm 1\\ x=\pm \sqrt{2}\end{matrix}\right.\)
Lập bảng biến thiên, hoặc xét:
\(y''=4x^3-6x\)
\(\Rightarrow \left\{\begin{matrix} y''(1)=-2< 0\\ y''(-1)=2>0\\ y''(\sqrt{2})=2\sqrt{2}>0\\ y''(-\sqrt{2})=-2\sqrt{2}< 0\end{matrix}\right.\)
Do đó các điểm cực tiểu của hàm số là \(x=-1; x=\sqrt{2}\)
Suy ra tổng các giá trị cực tiểu của hàm số :
\(f(-1)+f(\sqrt{2})=\frac{10074}{5}+\frac{4\sqrt{2}}{5}+2016=\frac{20154+4\sqrt{2}}{5}\)
Đáp án B.
1/ \(f'\left(x\right)=\frac{3\sqrt{x^2+1}-\frac{x\left(3x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\frac{3\left(x^2+1\right)-3x^2-x}{\left(x^2+1\right)\sqrt{x^2+1}}=\frac{3-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)
Hàm số đồng biến trên \(\left(-\infty;3\right)\) nghịch biến trên \(\left(3;+\infty\right)\)
\(\Rightarrow f\left(x\right)\) đạt GTLN tại \(x=3\)
\(f\left(x\right)_{max}=f\left(3\right)=\frac{10}{\sqrt{10}}=\sqrt{10}\)
2/ \(y'=\frac{\sqrt{x^2+2}-\frac{\left(x-1\right)x}{\sqrt{x^2+2}}}{x^2+2}=\frac{x^2+2-x^2+x}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{x+2}{\left(x^2+2\right)\sqrt{x^2+2}}\)
\(f'\left(x\right)=0\Rightarrow x=-2\in\left[-3;0\right]\)
\(y\left(-3\right)=-\frac{4\sqrt{11}}{11}\) ; \(y\left(-2\right)=-\frac{\sqrt{6}}{2}\) ; \(y\left(0\right)=-\frac{\sqrt{2}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}M=-\frac{\sqrt{2}}{2}\\N=-\frac{\sqrt{6}}{2}\end{matrix}\right.\) \(\Rightarrow MN=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}\)
Tất cả các đáp án đều sai
3/ \(\left\{{}\begin{matrix}\left|x-3\right|\ge0\\\sqrt{x+1}>0\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\ge0\) \(\forall x\Rightarrow N=0\) khi \(x=3\)
- Với \(0\le x< 3\Rightarrow f\left(x\right)=\left(3-x\right)\sqrt{x+1}\)
\(\Rightarrow f'\left(x\right)=-\sqrt{x+1}+\frac{\left(3-x\right)}{2\sqrt{x+1}}=\frac{-2\left(x+1\right)+3-x}{2\sqrt{x+1}}=\frac{-3x+1}{2\sqrt{x+1}}\)
\(f'\left(x\right)=0\Rightarrow x=\frac{1}{3}\)
- Với \(3< x\le4\Rightarrow f\left(x\right)=\left(x-3\right)\sqrt{x+1}\)
\(\Rightarrow f'\left(x\right)=\sqrt{x+1}+\frac{x-3}{2\sqrt{x+1}}=\frac{2\left(x+1\right)+x-3}{2\sqrt{x+1}}=\frac{3x-1}{2\sqrt{x+1}}>0\) \(\forall x>3\)
Ta có: \(f\left(0\right)=3\) ; \(f\left(\frac{1}{3}\right)=\frac{16\sqrt{3}}{9}\) ; \(f\left(4\right)=\sqrt{5}\)
\(\Rightarrow M=\frac{16\sqrt{3}}{9}\Rightarrow M+2N=\frac{16\sqrt{3}}{9}\)
Câu 2 hình như câu B mà người ta nói đạt GTLN . GTNN tại M , N nên là 0 x -2 =0
Theo mình P nhỏ nhất khi và chỉ khi M trùng D. Khi đó OM = \(\sqrt{14}\). đúng không mọi người ơi?