K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

6 tháng 1 2017

Chọn D.

Ta có d1 đi qua A(2;2;3) và có 

Do (P) cách đều d1;d2 nên (P) song song với  d 1 ,   d 2

(P) có dạng 7x – 2y – 4z + d = 0

Vì (P) cách đều hai đường thẳng nên: d(A;(P)) = d(B;(P))

Chọn A

2 tháng 8 2019

17 tháng 4 2019

Đáp án B.

NV
26 tháng 2 2023

\(\overrightarrow{u_{d1}}=\left(-1;1;1\right)\) ; \(\overrightarrow{u_{d2}}=\left(2;-1;-1\right)\)

\(\Rightarrow\left[\overrightarrow{u_{d1}};\overrightarrow{u_{d2}}\right]=\left(0;1;-1\right)\)

Do (P) song song \(d_1;d_2\Rightarrow\left(P\right)\) nhận \(\left(0;1;-1\right)\) là 1 vtpt

Phương trình (P) có dạng: \(y-z+c=0\)

Lấy \(A\left(2;0;0\right)\in d_1\) và \(B\left(0;1;2\right)\in d_2\)

Do (P) cách đều 2 đường thẳng \(\Rightarrow d\left(A;\left(P\right)\right)=d\left(B;\left(P\right)\right)\)

\(\Rightarrow\dfrac{\left|0-0+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|1-2+c\right|}{\sqrt{1^2+\left(-1\right)^2}}\Rightarrow\left|c\right|=\left|c-1\right|\)

\(\Rightarrow c=\dfrac{1}{2}\Rightarrow\) phương trình (P) có dạng: 

\(y-z+\dfrac{1}{2}=0\)

1 tháng 10 2019

1 tháng 3 2018

Chọn A.

Gọi d là đường thẳng cần tìm

d đi qua điểm A(2;1;2) và có vectơ chỉ phương  

15 tháng 12 2017