K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

 

Đáp án D

 

Các vtpt của (Q) và (R) lần lượt là: 

=> vtpt của (P) là:

Hay (P):  4x +5y -3z -22=0

11 tháng 10 2019

Chọn C

Phương pháp

Mặt phẳng (P) vuông góc với cả hai mặt phẳng (Q),(R) nên 

1 tháng 3 2017

Chọn B.

6 tháng 1 2017

28 tháng 7 2017

Đáp án D

Từ giả thiết suy ra:

Mặt khác mặt phẳng (P) đi qua điểm B(2 ;1 ;3) nên ta có phương trình của mặt phẳng (P) là:

4(x - 2) + 5(y - 1) + 3(z - 3) = 0  4x + 5y + 3z - 22 = 0

1 tháng 10 2017

Đáp án A.

9 tháng 7 2017

Chọn D

19 tháng 11 2018

Đáp án A

Ta có:

Mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R) khi và chỉ khi

28 tháng 9 2019

Đáp án C.

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)