Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Mặt phẳng (P) cắt Ox, Oy, Oz tại M, N, P có phương trình x 2 + y b + z c = 1
Vì N thuộc mặt phẳng (P) ⇒ 1 2 + 2 b + 1 c = 1 ⇔ 1 b + 1 c = 1 2 ⇔ b c = 2 b + c .
Đáp án B
Phương pháp: (P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
TH2: I ∈ (P), với I là trung điểm của BC
Cách giải:
Ta có:
(P) cách đều B, C ó d(B;(P)) = d(c;(P))
TH1: BC // (P)
=> (P) đi qua O và nhận là 1 VTPT
TH2: I ∈ (P) với I là trung điểm của BC
=> (P): 6x – 3y + 4z = 0
Dựa vào các đáp án ta chọn được đáp án B
Chọn D.
Phương pháp:
Thay trực tiếp tọa độ các điểm ở các đáp án vào phương trình mặt phẳng.
Cách giải :
Ta có : 1 + 1 + 1 - 3 = 0 ⇒ A ( 1 ; 1 ; 1 ) ∈ ( P )
Phương trình mặt phẳng (ABC) là x 3 + y 2 + z 6 = 1 →2x+3y+z-6=0
Dễ thấy D ϵ (ABC). Gọi H,K,I lần lượt là hình chiếu của A,B,C trên ∆.
Do ∆ là đường thẳng đi qua D nên AH≤ AD,BK≤ BD,CI≤ CD.
Vậy để khoảng cách từ các điểm A,B,C đến ∆ là lớn nhất thì ∆ là đường thẳng đi qua D và vuông góc với (ABC). Vậy phương trình đường thẳng ∆ là x = 1 + 2 t y = 1 + 3 t ( t ∈ ℝ ) z = 1 + t . Kiểm tra ta thấy điểm M(5;7;3) ϵ ∆
Đáp án A
Phương pháp:
Thay tọa độ các điểm vào phương trình (P), xác định điểm có tọa độ thỏa mãn phương trình.
Cách giải:
Đáp án C
Dễ thấy điểm P(1; 1; 1) thuộc cả hai mặt phẳng nên nó thuộc đường thẳng giao tuyến của hai mặt phẳng này.