Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Sử dụng phương pháp xác định tâm mặt cầu ngoại tiếp khối chóp.
Cách giải: Đặt A(x;0;0), B(0;y;0), (x,y > 0)
Vì OA + OB = OC = 1 => x + y = 1
Gọi J, F lần lượt là trung điểm AB, OC. Kẻ đường thẳng qua F song song OJ, đường thẳng qua J song song OC, 2 đường thẳng này cắt nhau tại G.
∆OAB vuông tại O => J là tâm đường tròn ngoại tiếp tam giác.
GJ // OC => GJ ⊥ (OAB) => GO = GA = GB
GF // JO, JO ⊥ OC => GF ⊥ OC, mà F là trung điểm của OC
=>GF là đường trung trực của OC => GC = GO
=> GO = GA = GB = GC => G là tâm mặt cầu ngoại tiếp tứ diện OABC
Bán kính mặt cầu ngoại tiếp tứ diện OABC :
Ta có:
Đáp án D
Gọi D, K lần lượt là trung điểm của AB, OC.
Từ D kẻ đường thẳng vuông góc với mặt phẳng O A B và cắt mặt phẳng trung trực OC tại I x 1 ; y 1 ; z 1 suy ra I là tâm mặt cầu ngoại tiếp tứ diện OABC và z 1 = c 2 (do DOKI là hình chữ nhật).
Tương tự D F = a 2 ⇒ x 1 = a 2 ; y 1 = b 2 ⇒ I a 2 ; b 2 ; c 2 .
Suy ra x 1 + y 1 + z 1 = a + b + c 2 = 1 ⇒ I ∈ P : x + y + z − 1 = 0 .
Vậy khoảng cách từ điểm M đến (P) là d = 2015 3 .
Giả sử
Tứ diện OABC có OA, OB, OC đôi một vuông góc.
Gọi M, N lần lượt là trung điểm của AB và OC.
Ta có
Qua M dựng đường thẳng song song với OC, qua N dựng đường thẳng song song với OM. Hai đường thẳng này cắt nhau tại I.
∆ O A B vuông tại O ⇒ M là tâm đường tròn ngoại tiếp ∆ O A B ⇒ I A = I B = I O .
I là tâm mặt cầu ngoại tiếp O.ABC
Ta có
Chọn A.