K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Đáp án A

Mặt cầu (S) có tâm I(-1;4;-3) và có bán kính R = 6. Gọi H là hình chiếu vuông góc của I trên trục Ox. Ta có H(-1;0;0) và IH=5.

Gọi K là hình chiếu vuông góc của I trên mặt phẳng (P). Ta có

d(I; (P)) = IK ≤ IH = 5 < R = 6

Do đó mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn. Vậy không tồn tại mặt phẳng (P) chứa Ox và tiếp xúc với (S)

23 tháng 11 2017

Đáp án A

26 tháng 7 2019

Đáp án A

Gọi A = d ∩  d 2 . Ta có A   d 2  => A(-1; a; a+ 1).

Theo giả thiết:

Thay vào (*) ta được:

-1.3 + (a - 1).1 + a.1 = 0 <=> 2a - 4 = 0 <=> a = 2 <=> u d →   =   MA →  = (-1; 1; 2)

Vậy phương trình chính tắc của đường thẳng d là: 

Vậy đáp án đúng là A.

17 tháng 6 2019

Đáp án B

NV
14 tháng 4 2022

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)

15 tháng 7 2017

Đáp án B

Đường thẳng d đi qua điểm M(6 ;1 ;0) và có vectơ chỉ phương là u d → = (4; -1; -1). Ta có:

Do đường thẳng d tiếp xúc với mặt cầu (S) nên (S) có bán kính là:

Vậy phương trình của mặt cầu (S) là : ( x   -   1 ) 2   +   y 2   +   ( z   +   1 ) 2  = 9

18 tháng 4 2021

 

M N I (d) H

gọi M,N là hai điểm cắt đg tròn tâm I 

kẻ IH vuông góc với MN ,theo đề bài ta có MN =6 => MH=3 

độ dài từ tâm I đến (d) =\(\dfrac{\left|2.3-5.-1+18\right|}{\sqrt{2^2+\left(-5\right)^2}}=\sqrt{29}\)

Áp dụng pytago vào tam giác vuông IMH ta có 

\(IM=\sqrt{IH^2+MH^2}=\sqrt{38}\)

vậy pt đg tròn là \(\left(x-3\right)^2+\left(y+1\right)^2=\left(\sqrt{38}\right)^2\)( tới đây bạn tự khai triển ra nha 

b ) cách làm tương tự 

2 .

I N M H P

MN max khi nó là đường kính > nó phải đi qua điểm I 

\(\overrightarrow{uIA}=\left(4;-2\right)=>n\overrightarrow{IA}=\left(2;4\right)\)

ptđt \(\Delta:2\left(x-3\right)+4\left(y-0\right)=0\)

MN min 

ta có MN=2HM 

trg tam giác vuông IHMtheo pytago ta có  \(HM=\sqrt{IA^2-IH^2}\)có  IA là bán kính ( cố định ) => IH max thì MN min 

lại xét tam giác IHP trong tam giác IHP thì có IP là cạch huyền mà trg tam giác cạc huyền là cạch lớn nhất nên IH max khi điểm H trùng với điểm P .

 

 

18 tháng 4 2021

vậy toạ độ A trùng với P nên \(u\overrightarrow{IP}=\left(4;-2\right)=n\overrightarrow{\Delta}\)

ptđt là \(4\left(x-3\right)-2\left(y-0\right)=0\)

mình trình bày hơi tệ bạn thông cảm nha !

23 tháng 8 2019

Đáp án A

Ta có: 

AM →  (3; 2; 4)

Mặt phẳng (P) có vecto pháp tuyến là n p →  (1; 1; 1)

Gọi H là hình chiếu vuông góc của A trên d. Ta có: d(A; d) = AH ≤ AM = 29

Dấu bằng xảy ra khi và chỉ khi H trùng M, nghĩa là d vuông góc với AM.