Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi hai mặt phẳng đã cho lần lượt là (P) và (Q). Ta có
Hai vectơ này song song khi và chỉ khi tồn tại một số thực k sao cho
Từ đó suy ra hai mặt phẳng (P) và (Q) cắt nhau khi và chỉ khi hai vectơ pháp tuyến của chúng không song song, điều đó tương đương với m khác 1.
Chọn C.
Để hai mặt phẳng (P) và (Q) trùng nhau khi và chỉ khi:
Đáp án A
Phương pháp : Cho hai mặt phẳng có phương trình lần lượt là :
Khi đó (P) và (Q) song song với nhau
Cách giải:
Chọn B
Phương trình (S): x2 + y2 + z2 + 4x - 6y + m = 0 là phương trình mặt cầu <=> m < 13
Khi đó (S) có tọa độ tâm I (-2;3;0) bán kính
Gọi M (x;y;z) là điểm bất kỳ thuộc Δ.
Tọa độ M thỏa mãn hệ:
Đặt y = t ta có:
=> Δ có phương trình tham số:
Δ đi qua điểm N (-2; 0; -3) và có vectơ chỉ phương
Giả sử mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8. Gọi (C) là đường tròn lớn chứa đường thẳng Δ. Khi đó IC2 = R2 - AC2 = 13 - m - 42 = -m - 3
N (0;-3;-3)
Vậy mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8
<=> -m - 3 = 9 <=> m = -12
Đáp án B
Vecto pháp tuyến của hai mặt phẳng (P) và (Q) là :
n p → (1; -1; 2); n q → (2; -2; m2 + 3m)
Hai mặt phẳng (P) và (Q) song song với nhau khi và chỉ khi tồn tại một số thực k sao cho:
n p → = k. n q →
Đáp án C
Ta có: n p → = (1; m; m + 3), n Q → = (1; -1; 2).
Hai mặt phẳng (P) và (Q) vuông góc khi và chỉ khi n p → . n Q → = 0
⇔ 1.1 + m.(-1) + (m + 3).2 = 0 ⇔ m + 7 = 0 ⇔ m = -7
Đáp án C
Hai mặt phẳng 3x + 2y - mz + 2m - 7 = 0 và (5m + 1)x + (m + 3)y - 2z - 10 = 0 trùng nhau khi và chỉ khi tồn tại một số thực k sao cho: