Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp
Viết phương trình đường thẳng biết điểm đi qua và VTCP
Cách giải
∆ vuông góc với d và AB => AB nhận u → = ( - 2 ; 1 ; 3 ) và A B → = ( - 2 ; 3 ; 2 ) là cặp VTPT
Phương trình đường thẳng
Gọi B(x;y), ta có \(OA\perp OC\) nên OABC là hình chữ nhật =>\(\overrightarrow{AB}=\overrightarrow{OC}\) \(\Leftrightarrow\begin{cases}x-2=0\\y-0=4\\z-0=0\end{cases}\) \(\Rightarrow B\left(2;4;0\right)\)
Ta có \(\overrightarrow{OB}=\left(2;4;0\right);\overrightarrow{OD}=\left(0;0;4\right);\overrightarrow{CB}=\left(2;0;0\right);\overrightarrow{CD}=\left(0;-4;4\right)\)
Do đó \(\overrightarrow{OB}.\overrightarrow{OD}=0\) và \(\overrightarrow{CB}.\overrightarrow{CD}=0\Rightarrow\widehat{BOD}=\widehat{BCD}=90^0\)
Suy ra mặt cầu đi qua 4 điểm O, B, C, D có tâm I là trung điểm của BD, bán kính R=OI
Ta có \(I\left(1;2;2\right);R=OI=\sqrt{1+2^2+2^2}=3\)
Do đó mặt cầu (S) có phương trình : \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2=9\)
Chọn D
Xét tứ diện OABC có OA, OB, OC đôi một vuông góc nên nếu M là trực tâm tam giác ABC thì OM ⊥ (ABC)
Khi đó phương trình mặt phẳng (ABC) là: 2 (x-2)+ (y-1)+5 (z-5) = 0 ó 2x + y + 5z – 30 = 0.
Vậy khoảng cách từ điểm I (1;2;3) đến mặt phẳng (P) là
Đáp án D
Kiến thức: Chóp tam giác có 3 cạnh bên đôi một vuông góc với nhau thì hình chiếu của đỉnh trên mặt đáy trùng với trực tâm của đáy.
Chóp O.ABC có các cạnh OA, OB, OC đôi một vuông góc với nhau, M(2;1;5) là trực tâm của tam giác ABC
vậy (P) nhận O M → =(2;1;5) làm một vectơ pháp tuyến.
=> Phương trình mặt phẳng (P) là: 2(x-2)+y-1+5(z-5)=0
<=> 2x+y+5z-30=0
Đáp án D.
Ta có:
Phương trình mặt phẳng (ABC) là:
Do đó
Vậy phương trình mặt cầu tâm D tiếp xúc với mặt phẳng (ABC) là:
Lời giải:
Vì mặt phẳng đi qua $A$ nên có dạng
\((P):a(x-1)+b(y-2)+c(z-3)=0\)
Ta có \(\overrightarrow{AB}=(-3,-1,2)\). Vì PT mặt phẳng đi qua $A,B$ nên
\(\overrightarrow{n_P}=(a,b,c)\perp \overrightarrow{AB}\Rightarrow -3a-b+2c=0\) \((1)\)
\(d(C,(P))=2d(D,(P))\Leftrightarrow \frac{|a-3b-2c|}{\sqrt{a^2+b^2+c^2}}=\frac{2|-a+b-2c|}{\sqrt{a^2+b^2+c^2}}\)
\(\Leftrightarrow (a-3b-2c)^2=4(-a+b-2c)^2\) \((2)\)
Từ \((1)\) thay \(2c=3a+b\) vào \((2)\) và khai triển thu được: \(\left[{}\begin{matrix}b=\dfrac{3a}{2}\\b=\dfrac{-5a}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}c=\dfrac{9a}{4}\\c=\dfrac{a}{4}\end{matrix}\right.\)
Do đó PTMP \(\left[{}\begin{matrix}a\left(x-1\right)+\dfrac{3}{2}a\left(y-2\right)+\dfrac{9}{4}a\left(z-3\right)=0\\a\left(x-1\right)-\dfrac{5}{2}a\left(y-2\right)+\dfrac{1}{4}a\left(z-3\right)=0\end{matrix}\right.\)
\(\leftrightarrow\left[{}\begin{matrix}4x+6y+9z-43=0\\4x-10y+z+13=0\end{matrix}\right.\)