Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có H (a;b;c) là trực tâm tam giác ABC nên ta có
Đường thẳng đi qua trực tâm H (2;1;1) của tam giác ABC và vuông góc với mặt phẳng (ABC) có vecto chỉ phương có phương trình là
Chọn A
Ta có:
AB² = 10, BC² = 24, AC² = 14 => ∆ABC vuông tại A.
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0;2;0).
Đường thẳng d cần tìm đi qua I (0;2;0) và nhận vectơ làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là
Chọn A
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0; 2; 0)
Đường thẳng d cần tìm đi qua I (0; 2; 0) và nhận vectơ làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là
Chọn A.
Đường thẳng d đi qua G(2;-1;0) và có vectơ chỉ phương là
Vậy phương trình tham số của d là
Đáp án A.
(P) đi qua A và G nên (P) đi qua trung điểm của BC là điểm
Ta có: cùng phương với véc tơ (-1;1;-2)
Mặt phằng (ABC) có vác tơ pháp tuyến:
cùng phương với véc tơ (0;2;1)
Vì (P) chứa AM và vuông góc với (ABC) nên (P) có véc tơ chỉ phương:
Ngoài ra (P) qua A ( 1 ; - 2 ; 3 ) nên phương trình (P):
Đáp án A
=> ∆ ABC vuông tại A
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC, I(0;2;0)
Đường thẳng d qua tâm I và vuông góc mặt phẳng (ABC) được xác định
q u a I ( 0 ; 2 ; 0 ) V T C P : u → = 1 2 A B → , A C → = ( 3 ; - 1 ; 5 )
Vậy phương trình của d là x - 3 3 = y - 1 - 1 = z - 5 5