K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Đáp án C

Gọi H là hình chiếu của M trên (P) => MH  là khoảng cách từ M đến mặt phẳng (P). Đường thẳng D có vectơ chỉ phương  u → =(2;1;3) mặt phẳng (P) có vectơ pháp tuyến   n → =(1;1;-2)

Khi đó:

Tam giác MHA vuông tại H  

22 tháng 4 2017

2 tháng 11 2017

Đáp án B

Vì M là hình chiếu vuông góc của I trên 

Khi đó 

Vậy M(5;-2;-5) hoặc M(5;-8;1) => bc =10

27 tháng 10 2018

21 tháng 12 2019

Đáp án D

Gọi H là hình chiếu của A trên đường thẳng d.

Ta có: AH ≤ AM nên khoảng cách từ A đến đường thẳng d nhỏ nhất khi AH trùng với mới AM, khi đó H trùng với M và AM vuông góc d. Mặt phẳng (P) có vecto pháp tuyến n p → (1; 1; 1) . AM → (0; -2; -1) Đường thẳng d nhận vecto [ AM → ; n p → ] làm vecto chỉ phương. Phương trình tham số của d:

12 tháng 9 2017

16 tháng 4 2018

Đáp án B.

12 tháng 12 2017

Đáp án B

Phương pháp:

thay tọa độ điểm B vào phương trình  ( α ) => 1 phương trình 2 ẩn a, b.

 Sử dụng công thức tính khoảng cách

 lập được 1 phương trình 2 ẩn chứa a, b.

+) Giải hệ phương trình tìm a,b => Toạ độ điểm B => Độ dài AB.

Dế thấy 

Ta có 

Lại có

Đường thẳng d đi qua M(0;0;-1), có  u → = ( 1 ; 2 ; 2 )

 

Do đó

 

 

Vậy AB =  7 2

22 tháng 12 2018

10 tháng 9 2017

Chọn A

Ta có M là giao điểmcủa d(P) nên ta có tọa độ của M cũng thỏa mãn phương trình mặt phẳng (P) hay

Gọi điểm H là hình chiếu của M lên

 

đường thẳng  ta có

Vậy tồn tại hai đường thẳng  ∆ thỏa mãn đề bài