Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)
=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)
=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)
=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)
=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)
Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít
Thề là bài của bạn Kirito làm mình không hiểu gì hết. Đáp án cuối cùng của bạn cũng sai nốt, tính tích phân thì ra giá trị cụ thể chứ làm gì còn $c$
Lời giải:
Ta có \(I=\underbrace{\int ^{1}_{0}x^2dx}_{A}+\underbrace{\int ^{1}_{0}x^3\sqrt{1-x^2}dx}_{B}\)
Xét \(A=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}\)
Xét \(B=\frac{1}{2}\int ^{1}_{0}x^2\sqrt{1-x^2}d(x^2)\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow x^2=1-t^2\). Khi đó
\(B=-\frac{1}{2}\int ^{1}_{0}(1-t^2)td(1-t^2)=\int ^{1}_{0}t^2(1-t^2)dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^3}{3}-\frac{t^5}{5} \right )=\frac{2}{15}\)
\(\Rightarrow I=A+B=\frac{7}{15}\)
Chắc bạn học lớp 12 nhỉ???
Đ/A:
\(I=\int\limits^1_0x^2\left(1+x\sqrt{1-x^2}\right)dx=\int\limits^1_0x^2dx+\int\limits^1_0x^3\sqrt{1-x^2}dx\)
\(I_1=\int\limits^1_0x^2dx=\frac{x^3}{3}\)|\(_0^1=\frac{1}{3}\)
\(I_2=\int\limits^1_0x^3\sqrt{1-x^2}dx\)
Đặt \(t=\sqrt{1-x^2}\Rightarrow x^2=1-t^2\Rightarrow xdx\Rightarrow tdt\)
Đổi cận: \(x=0\Rightarrow t=1;x=1\Rightarrow t=0\)
\(\Rightarrow I_2=-\int\limits^1_0\left(1-t^2\right)t^2dt=\int\limits^1_0\left(t^2-t^4\right)dt=\left(\frac{t^3}{3}-\frac{t^5}{5}\right)\)|\(_0^1=\frac{2}{15}\)
Vậy \(I=I_1+I_2=\frac{7}{5}\)
Đặt \(u=x\Rightarrow du=dx;dv=c^{2x}\) chọn \(v=\frac{1}{2}c^{2x}\)
\(\Rightarrow\int\limits^1_0xc^{2x}dx=\frac{x}{2}c^{2x}\)|\(_0^1-\frac{1}{2}\int\limits^1_0c^{2x}dx=\frac{c^2}{2}-\frac{1}{4}c^{2x}\)|\(_0^1=\frac{c^2+1}{4}\)
Vậy \(I=\frac{3c^2+7}{2}\)
con hươu A nha,tick cho 1 cái đi,ko đúng ko tick cũng được nha
a) Dấu hiệu là điểm kiểm tra môn Toán (học kì 1) của mỗi học sinh lớp 7C
Số các giá trị: 11 giá trị
b) Tự vẽ nha
Nhầm, sửa nha
a) Dấu hiệu là điễm kiểm tra môn Toán (học kì I) của môi học sinh lớp 7C
Số các giá trị: 50 giá trị
b) Tự vẽ nha
Giải:
Mặt cầu \((S)\) có bán kính là \(R=\sqrt{16}=4=OA=OB\)
Do đó diện tích tam giác \(OAB\) là:
\(S_{OAB}=\frac{OA.OB.\sin AOB}{2}\leq \frac{OA.OB}{2}=8(\text{đvdt})\)
Dấu bằng xảy ra khi \(\sin AOB=1\Leftrightarrow \angle AOB=90^0\)
Đáp án C.
Chọn A