K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2021

\(\overrightarrow{B'D'}=\left(2;-2;0\right)\)

Gọi \(B\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}=\left(2-x;1-y;2-z\right)\\\overrightarrow{BC}=\left(-2-x;3-y;2-z\right)\end{matrix}\right.\)

\(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BD}=\overrightarrow{B'D'}\)

\(\Rightarrow\left\{{}\begin{matrix}2-x+\left(-2-x\right)=2\\1-y+\left(3-y\right)=-2\\2-z+\left(2-z\right)=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;3;2\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Lời giải:
Gọi tọa độ của điểm $A'$ là $(a,b,c)$

Vì $A'B'C'D'$ là hình bình hành nên theo tính chất hình bình hành ta có:

\(\overrightarrow{A'B'}+\overrightarrow{A'D'}=\overrightarrow{A'C'}\)

Mà: \(\overrightarrow{A'C'}=\overrightarrow{AC}; \overrightarrow{A'D'}=\overrightarrow{AD}\) nên:

\(\overrightarrow{A'B'}+\overrightarrow{AD}=\overrightarrow{AC}\)

\(\Leftrightarrow (-2-a,1-b,1-c)+(6,3,3)=(7,0,-1)\)

\(\Leftrightarrow \left\{\begin{matrix} -2-a+6=7\\ 1-b+3=0\\ 1-c+3=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=4\\ c=5\end{matrix}\right.\)

Vậy tọa độ điểm A' là (-3,4,5)

AH
Akai Haruma
Giáo viên
20 tháng 11 2020

Hoàng Quỳnh Hương: mình đã sửa, bạn coi lại nhé :''>

NV
5 tháng 2 2021

\(\overrightarrow{AA'}=\left(0;0;3\right)=\overrightarrow{BB'}=\overrightarrow{CC'}\)

\(\Rightarrow\left\{{}\begin{matrix}B'\left(0;2;3\right)\\C'\left(-1;0;3\right)\end{matrix}\right.\)

\(\Rightarrow G\left(0;\dfrac{2}{3};3\right)\)

NV
5 tháng 2 2021

Giống bài trước \(\Rightarrow B'\left(0;2;3\right)\Rightarrow M\left(\dfrac{1}{2};1;\dfrac{3}{2}\right)\)

 

AH
Akai Haruma
Giáo viên
14 tháng 2 2017

Lời giải:

\(ABCD.A'B'C'D'\) là hình hộp nên ta có các điều sau:

\( \overrightarrow{AB}=\overrightarrow {DC}\Leftrightarrow (1,1,1)=(x_C-1,y_C+1,z_C-1)\Leftrightarrow (x_C,y_C,z_C)=(2,0,2)\)

Ta tìm được tọa độ điểm \(C\)

Tiếp tục có

\( \overrightarrow{DD'}=\overrightarrow {CC'}\Leftrightarrow (x_{D'}-1,y_{D'}+1,z_{D '}-1)=(2,5,-7)\Leftrightarrow (x_{D'},y_{D'},z_{D'})=(3,4,-6)\)

Ta tìm được tọa độ điểm \(D'\)

\( \overrightarrow{AD}=\overrightarrow {A'D'}\Leftrightarrow (0,-1,0)=(3-x_{A'},4-y_{A'},-6-z_{A '})\Leftrightarrow (x_{A'},y_{A'},z_{A'})=(3,5,-6)\)

Ta tìm được tọa độ điểm \(A'\)

\( \overrightarrow{AA'}=\overrightarrow {BB'}\Leftrightarrow (2,5,-7)=(x_{B'}-2,y_{B'}-1,z_{B '}-2)\Leftrightarrow (x_{B'},y_{B'},z_{B'})=(4,6,-5)\)

Ta tìm được tọa độ điểm \(B'\)

14 tháng 2 2017

thank you minh cung lam ra nhu ban vay

24 tháng 11 2019

Chọn A.

29 tháng 10 2021

mn giúp mk vớiiiiiiiiii

NV
1 tháng 11 2021

Gọi H là hình chiếu vuông góc của A' lên (ABCD)

Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD

\(\Rightarrow H\) là trung điểm BD

\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)

\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)

\(\Rightarrow V=A'H.AB.AD=3a^3\)

NV
31 tháng 3 2019

Do \(BC=BB'\Rightarrow BCC'B'\) là hình vuông

Trong mặt phẳng (BCC'B'), từ B' kẻ đường thẳng vuông góc C'E cắt CC' tại M và cắt BC kéo dài tại N

\(\Rightarrow M\) là trung điểm CC' và C là trung điểm BN

Trong mặt phẳng (ABCD), từ N kẻ đường thẳng song song AB cắt AD kéo dài tại P

\(\left\{{}\begin{matrix}NP\perp\left(BCC'B'\right)\Rightarrow NP\perp C'E\\C'E\perp B'N\end{matrix}\right.\) \(\Rightarrow C'E\perp\left(B'NP\right)\Rightarrow C'E\perp B'P\)

\(\Rightarrow F\) trùng P

\(DF=CN=BC=2\)