Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay tọa độ điểm A và B vào vế trái của phương trình mặt phẳng (P) ta có:
1+ (-3)+0-1=-3<0 và 5+ (-1)+ (-2)-1=1>0
Nên suy ra A và B nằm khác phía so với mặt phẳng (P).
Gọi là điểm đối xứng với B qua (P). Ta có:
|MA – MB| = |MA – MB’| ≤ AB’.
Do đó |MA – MB| lớn nhất là bằng AB' khi và chỉ khi M là giao điểm của đường thẳng AB' với mặt phẳng (P).
Ta có nên đường thẳng AB' có véc-tơ chỉ phương . Phương trình đường thẳng AB' là
Tọa độ điểm M là nghiệm hệ
Như vậy M (6;-1;-4) => abc = 6 (-1).(-4) = 24.
Chọn D
Gọi G (2;2;-2) là trọng tâm tam giác ABC, khi đó
Ta có:
đạt giá trị nhỏ nhất khi M là hình chiếu vuông góc của G trên mặt phẳng (P). Khi đó tọa độ của M (a;b;c) và vecto cùng phương với vecto pháp tuyến n (1;-2;2) thỏa mãn hệ
Vậy a+b+c=3.
Đáp án A
Gọi I là điểm sao cho
khi và chỉ khi M là hình chiếu của I lên mặt phẳng (Oxy)
Đáp án D.
Gọi I là điểm thỏa mãn
Ta có:
=> M là hình chiếu của I trên (P) dễ thấy
Đáp án A.
Phương trình mặt phẳng (Oxy):
Lấy điểm A’ đối xứng với A qua mặt phẳng (Oxy). Dễ thấy
Ta có:
Dấu bằng xảy ra khi và chỉ khi M nằm giữa A’B, hay M là giao điểm của A’B với mặt phẳng (Oxy).
Đường thẳng A’B có và qua phương trình đường thẳng A’B:
M là giao của A’B và (Oxy) nên
Do đó