K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

Chọn D

nên mặt phẳng (P) nhận 

và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:

1 ( x   +   1 )   +   1 ( y   +   2 )   +   1 ( z   -   5 )   =   0   h a y   x   +   y   +   z   - 2   =   0 .

18 tháng 6 2018

Chọn D

nên mặt phẳng (P) nhận 

và (P) đi qua điểm M(-1;-2;5) nên có phương trình là:

1 ( x   +   1 )   +   1 ( y   +   2 )   +   1 ( z   -   5 )   =   0   h a y   x   +   y   +   z   - 2   =   0 .

1 tháng 2 2017

Đáp án C

Ta có

15 tháng 7 2018

Chọn A.

Mặt phẳng (α) vuông góc với 2 mặt phẳng (P) và (Q) nên có một VTPT là

Phương trình mặt phẳng (α) là:

1(x - 2) + 2(y + 1) + 1.(z - 5) = 0 hay x + 2y + z – 5 = 0

27 tháng 8 2019

Đáp án B

Phương trình mặt phẳng (Q)  dạng: x - 2y - 3z + m = 0 (m ≠ 10).

 (Q) đi qua điểm A(2; -1; 0) nên ta  2 + 2 + m = 0 <=> m = -4.

Vậy phương trình mặt phẳng (Q)  x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.

25 tháng 10 2018

1 tháng 10 2017

Đáp án A.

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)

22 tháng 7 2017

Đáp án C

Phương pháp

Cách giải: Ta có:

là 1 VTPT của mặt phẳng (R).

Vậy phương trình mặt phẳng (R):