Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0
Chọn C
Phương trình tham số của . Gọi M = d ∩ (P).
Khi đó M ∈ d nên M (1+t;-t;2+t) ; M ∈ (P) nên 2(1 + t) – (- t) – 2 (2 + t) + 1 = 0 ó t = 1.
Vậy đường thẳng d cắt mặt phẳng (P) tại M (2;-1;3).
Gọi lần lượt là vectơ chỉ phương của d và vectơ pháp tuyến của mặt phẳng (P).
Khi đó một vectơ chỉ phương của đường thẳng cần tìm là .
Vậy phương trình đường thẳng cần tìm là
Đáp án C.
Gọi I là giao điểm của d và (P). Tọa độ I là nghiệm của hệ:
Ta có một vecto chỉ phương của ∆ như sau:
Vậy phương trình:
Chú ý: Do ∆ cắt d và ∆ nằm trong (P) nên ∆ phải đi qua I. Do đó ta có thể chọn được đáp là C mà không cần tìm VTCP của∆.
Chọn A
Phương trình tham số của
Ta có M = d ∩ (P) nên 2 (2+3t)-3 (-1+t)-5-t-6=0 ó t = 2 => M (8 ; 1 ; -7)
VTCP của Δ là
Δ đi qua M có VTCP nên có phương trình: