Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mặt phẳng (P) qua A và vuông góc d có phương trình:
\(2\left(x-1\right)+2\left(y+1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow2x+2y+z-1=0\)
Đường thẳng d' song song d và đi qua B (nên d' vuông góc (P)) có dạng:
\(\left\{{}\begin{matrix}x=4+2t\\y=2+2t\\z=-2+t\end{matrix}\right.\)
\(\Rightarrow\) Giao điểm C của d' và (P) thỏa mãn:
\(2\left(4+2t\right)+2\left(2+2t\right)-2+t-1=0\Rightarrow t=-1\Rightarrow C\left(2;0;-3\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(1;1;-4\right)\Rightarrow\) là 1 vtcp của \(\Delta\Rightarrow\) D là đáp án đúng
Chọn C
Gọi R là bán kính của mặt cầu, H là trung điểm của AB.
Mặt cầu (S) có tâm I (2; 5; 3), bán kính R = 5.
Phương trình mặt cầu (S) là:
nên phương trình có nghiệm duy nhất R=5.
Gọi (P) là mặt phẳng qua I và vuông góc với d \(\Rightarrow\left(P\right)\) có một vtpt \(\overrightarrow{n_{\left(P\right)}}=\overrightarrow{u_d}=\left(2;-2;1\right)\)
\(\Rightarrow\) phương trình (P): \(2\left(x-4\right)-2\left(y-1\right)+1\left(z-6\right)=0\)
\(\Leftrightarrow2x-2y+z-12=0\)
Gọi M là giao điểm của d và (P) \(\Rightarrow IM\perp d\), pt tham số của d: \(\left\{{}\begin{matrix}x=-2+2t\\y=7-2t\\z=t\end{matrix}\right.\)
Thay vào pt (P) ta được \(2\left(-2+2t\right)-2\left(7-2t\right)+t-12=0\) \(t=\dfrac{10}{3}\)
\(\Rightarrow\) tọa độ \(M\left(\dfrac{14}{3};\dfrac{1}{3};\dfrac{10}{3}\right)\)
\(\Rightarrow IM=\sqrt{\left(4-\dfrac{14}{3}\right)^2+\left(1-\dfrac{1}{3}\right)^2+\left(6-\dfrac{10}{3}\right)^2}=2\sqrt{2}\)
Do d cắt mặt cầu tại A, B nên M là trung điểm của AB \(\Rightarrow MA=\dfrac{AB}{2}=3\)
Trong tam giác \(IMA\) vuông tại M, áp dụng Pitago:
\(R=IA=\sqrt{IM^2+MA^2}=\sqrt{9+8}=\sqrt{17}\)
\(\Rightarrow\) pt mặt cầu (S): \(\left(x-4\right)^2+\left(y-1\right)^2+\left(z-6\right)^2=17\)
Chọn A
Đường thẳng d đi qua M(-5;7;0) và có vectơ chỉ phương
Gọi H là hình chiếu của I lên (d). Ta có:
Chọn D
Xét hàm số:
Do đó d (B; d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t = 2/3. Suy ra . Chọn một vectơ chỉ phương của đường thẳng d là
Vậy phương trình đường thẳng
Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)
Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).
Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)
Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)
Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)
\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)
Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
a)
Viết pt đường thẳng d dạng:
\(d=\left\{\begin{matrix}x=1+2t\\y=-1+t\\z=1+2t\end{matrix}\right.\)
Gọi \(H\left(1+2h;-1+h;1+2h\right)\) là hình chiếu vuông góc của I trên d
Ta có:
\(\overrightarrow{IH}\perp\overrightarrow{u_d}\Leftrightarrow\left(2h;-1+h;-2+2h\right)\left(2;1;2\right)=0\\ \Leftrightarrow9h-5=0\Leftrightarrow h=\frac{5}{9}\)
\(\overrightarrow{IH}=\left(\frac{10}{9};-\frac{4}{9};-\frac{8}{9}\right)\Rightarrow IH=\frac{2\sqrt{5}}{3}\)
b)
\(\Delta IAB\) vuông tại I và có đường cao IH, lại có IA=IB=R (R là bán kính mặt cầu (S))
Suy ra tam giác IAB vuông cân tại I \(\Rightarrow IA=IH\sqrt{2}=\frac{2\sqrt{10}}{3}\)
\(\Rightarrow R=\frac{2\sqrt{10}}{3}\)
Vậy \(\left(S\right):\left(x-1\right)^2+y^2+\left(z-3\right)^2=\frac{40}{9}\)
(Mình tính toán có thể sai, bạn tham khảo tạm cách làm nhé)