K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Đáp án D

Kiến thức: Chóp tam giác có 3 cạnh bên đôi một vuông góc với nhau thì hình chiếu của đỉnh trên mặt đáy trùng với trực tâm của đáy.

Chóp O.ABC có các cạnh OA, OB, OC đôi một vuông góc với nhau, M(2;1;5) là trực tâm của tam giác ABC

vậy (P) nhận  O M → =(2;1;5) làm một vectơ pháp tuyến. 

=> Phương trình mặt phẳng (P) là: 2(x-2)+y-1+5(z-5)=0

<=> 2x+y+5z-30=0

 

26 tháng 5 2017

Hình giải tích trong không gian

31 tháng 3 2016

A B C D H K S

Hạ \(SH\perp BC\Rightarrow\left(SBC\right)\perp\left(ABC\right)\)

                      \(\Rightarrow SH\perp BC;SH=SB.\sin\widehat{SBC}=a\sqrt{3}\)

Diện tích : \(S_{ABC}=\frac{12}{\boxtimes}BA.BC=6a^2\)

Thể tích : \(V_{s.ABC}=\frac{1}{3}S_{ABC}.SH=2a^3\sqrt{3}\)

Hạ \(HD\perp AC\left(D\in AC\right),HK\perp SD\left(K\in SD\right)\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H,\left(SAC\right)\right)\)

\(BH=SB.\cos\widehat{SBC}=3a\Rightarrow BC=4HC\)

\(\Rightarrow d\left(B,\left(SAC\right)\right)=4d\left(H,SAC\right)\)

Ta có : \(AC=\sqrt{BA^2+BC^2}=5a;HC=BC-BH=a\)

\(\Rightarrow HD=BA.\frac{HC}{AC}=\frac{3a}{5}\)

\(HK=\frac{SH.HS}{\sqrt{SH^2+HD^2}}=\frac{3a\sqrt{7}}{14}\)

Vậy \(d\left(B,\left(SAC\right)\right)=4HK=\frac{6a\sqrt{7}}{7}\)

21 tháng 9 2021

Em học lớp 6 em ko câu trả lời sorry chị

21 tháng 9 2021

dạ anh nhờ bn anh hay ai tl thay nha

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

3 tháng 1 2022

<666> ma trong olm 3 sáng 

9 tháng 4 2016

Khoảng cách từ A đến mặt phẳng (P) là : 

\(h=d_{\left(A,\left(P\right)\right)}=\frac{\left|1.2+\left(-2\right).\left(-2\right)+2.1+5\right|}{\sqrt{1^2+\left(-2\right)^2+2^2}}=4\)

Gọi r là bán kính của đường tròn thiết diện thì ta có \(2\pi r=6\pi\Rightarrow r=3\)

Gọi R là bán kính mặt cầu cần tìm, ta có : \(R^2=h^2+r^2=4^2+3^2=25\)

Vậy phương trình mặt cầu cần tìm là : \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=25\)

27 tháng 4 2017

Hỏi đáp Toán

13 tháng 7 2017

Chọn D

Xét tứ diện OABC có OA, OB, OC đôi một vuông góc nên nếu M là trực tâm tam giác ABC thì OM (ABC)

Khi đó phương trình mặt phẳng (ABC) là: 2 (x-2)+ (y-1)+5 (z-5) = 0 ó 2x + y + 5z – 30 = 0.

Vậy khoảng cách từ điểm I (1;2;3) đến mặt phẳng (P) là 

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)