K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

2 tháng 7 2017

Giải bài 16 trang 102 sgk Hình học 12 | Để học tốt Toán 12

25 tháng 2 2019

N' đối xứng với N qua đường thẳng d nên K là trung điểm của NN'

Vậy N' có tọa độ 

22 tháng 4 2019

Đáp án A

Khoảng cách nhỏ nhất giữa hai điểm A và B chính là khoảng cách giữa hai mặt phẳng (P) và (Q), dấu bằng xày ra khi và chỉ khi AB vuông góc với (P). Mặt khác vì O thuộc (P) nên ta có:

Vậy khoảng cách giữa hai điểm A và B nhỏ nhất bằng 3/2

25 tháng 11 2019

11 tháng 11 2017

25 tháng 4 2017

Đáp án D

Ta có:

 

Do đó  A B → phương với véc tơ  u → = ( 8 ; - 11 ; - 23 )

6 tháng 5 2018

Chọn B

8 tháng 11 2021

a) Vector pháp tuyến của hai mặt phẳng (\(\alpha\)) và (\(\beta\)) lần lượt là \(\overrightarrow{n_{\alpha}}\)=(4;1;2) và \(\overrightarrow{n_{\beta}}\)=(2; -2;1). Do hai vector này không cùng phương nên hai mặt phẳng (\(\alpha\)) và (\(\beta\)) cắt nhau.

b) Với x=0, \(\left\{{}\begin{matrix}y+2z+1=0\\-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-1\end{matrix}\right.\).

Với x=1, \(\left\{{}\begin{matrix}4+y+2z+1=0\\2-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-3\end{matrix}\right.\).

Suy ra đường thẳng d đi qua hai điểm A(0;1; -1) và B(1;1; -3), \(\overrightarrow{u_d}\)=\(\overrightarrow{AB}\)=(1;0;-2).

Phương trình cần tìm:

d: \(\left\{{}\begin{matrix}x=t\\y=1\\z=-1-2t\end{matrix}\right.\).

c) Gọi M'(x;y;z). Phương trình đường thẳng d' đi qua M(4;2;1) và nhận vector \(\overrightarrow{n_{\alpha}}\)=(4;1;2) làm vector chỉ phương là:

d': \(\left\{{}\begin{matrix}x=4+4t\\y=2+t\\z=1+2t\end{matrix}\right.\). Gọi M"(4+4t; 2+t; 1+2t) ∈ d'.

M"=d'\(\cap\)(α) ⇒ 4(4+4t)+2+t+2(1+2t)+1=0 ⇒ t= -1 ⇒ M''(0;1; -1).

Điểm M' đối xứng với M qua M'', suy ra M'(-4;0; -3).

d) Gọi N'(a;b;c). Phương trình mp(P) đi qua N(0;2;4) và nhận vector \(\overrightarrow{u_d}\)=(1;0; -2) làm vector pháp tuyến là:

(P): x -2z+8=0. Gọi N''(t;1; -1 -2t) ∈ d.

N''=d\(\cap\)(P) ⇒ t -2( -1 -2t)+8=0 ⇒ t= -2 ⇒ N''(-2;1;3).

Điểm N' đối xứng với N qua N'', suy ra N'(-4;0;2).